

 	Let Us Python (Second Edition): Python Is Future, Embrace It Fast

 	Yashavant Kanetkar & Aditya Kanetkar

 	BPB Publications (Feb 2020)

 	

 	Tags:
 	Computers, Languages, Python, Programming, Object Oriented, Open Source

 	Computersttt Languagesttt Pythonttt Programmingttt Object Orientedttt Open Sourcettt

 Learn Python Quickly, A Programmer-Friendly Guide

 Most Programmer’s learning Python are usually comfortable with some or the other programming language and are not interested in going through the typical learning curve of learning the first programming language. Instead, they are looking for something that can get them off the ground quickly. They are looking for similarities and differences in a feature that they have used in other language(s). This book should help them immediately. It guides you from the fundamentals of using module through the use of advanced object orientation.

 Key Features

 	Strengthens the foundations, as detailed explanation of programming language concepts are given in simple manner.Ê

 	Lists down all the important points that you need to know related to various topics in an organized manner.

 	Prepares you for coding related interview and theoretical questions.

 	Provides In depth explanation of complex topics and Questions.

 	Focuses on how to think logically to solve a problem.

 	Follows a systematic approach that will help you to prepare for an interview in short duration of time.

 	Exercises are exceptionally useful to complete the readerÕs understanding of a topic.

 What Will You Learn

 	Data types, Control flow instructions, consoleÊ& File Input/Output

 	Strings, list & tuples, List comprehension

 	Sets & Dictionaries, Functions & Lambdas

 	Dictionary Comprehension

 	Modules, classes and objects, Inheritance

 	Operator overloading, Exception handling

 	Iterators & Generators, Decorators, Command-line Parsing

 Who this Book is for

 Students, Programmers, researchers, and software developers who wish to learn the basics of Python programming language.

 About the Author

 Yashavant Kanetkar, Through his books and Quest Video Courses on C, C++, Java, Python, Data Structures, .NET, IoT, etc. Yashavant Kanetkar has created, molded and groomed lacs of IT careers in the last three decades. Yashavant’s books and Quest videos have made a significant contribution in creating top-notch IT manpower in India and abroad.

 Yashavant’s books are globally recognized and millions of students / professionals have benefitted from them. Yashavant’s books have been translated into Hindi, Gujarati, Japanese, Korean and Chinese languages.

 Aditya Kanetkar is currently working as a Software Engineer at Microsoft Corp., Seattle. Aditya’s current passion is anything remotely connected to Python, Machine Learning, Distributed Systems, Cloud Computing and C# related technologies.

 Aditya was formerly at Oracle America Inc. in Redwood City, California.

 Let Us
Python

 Second Edition

 Yashavant Kanetkar
Aditya Kanetkar

 [image:]

 FIRST EDITION 2019

 Revised and Updated Edition 2020

 Copyright © BPB Publications, INDIA

 ISBN: 978-93-89845-00-6

 All Rights Reserved. No part of this publication can be stored in a retrieval system or reproduced in any form or by any means without the prior written permission of the publishers.

 LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

 The Author and Publisher of this book have tried their best to ensure that the programmes, procedures and functions described in the book are correct. However, the author and the publishers make no warranty of any kind, expressed or implied, with regard to these programmes or the documentation contained in the book. The author and publisher shall not be liable in any event of any damages, incidental or consequential, in connection with, or arising out of the furnishing, performance or use of these programmes, procedures and functions. Product name mentioned are used for identification purposes only and may be trademarks of their respective companies.

 All trademarks referred to in the book are acknowledged as properties of their respective owners.

 Distributors:

 BPB PUBLICATIONS

 20, Ansari Road, Darya Ganj

 New Delhi-110002

 Ph: 23254990/23254991

 BPB BOOK CENTRE

 376 Old Lajpat Rai Market,

 Delhi-110006

 Ph: 23861747

 MICRO MEDIA

 Shop No. 5, Mahendra Chambers,

 150 DN Rd. Next to Capital Cinema,

 V.T. (C.S.T.) Station, MUMBAI-400 001

 Ph: 22078296/22078297

 DECCAN AGENCIES

 4-3-329, Bank Street,

 Hyderabad-500195

 Ph: 24756967/24756400

 Published by Manish Jain for BPB Publications, 20, Ansari Road, Darya Ganj, New Delhi-110002 and Printed by Repro India Pvt Ltd, Mumbai

 Dedicated to

 Nalinee & Prabhakar Kanetkar…

 About the Authors

 [image:]

 Yashavant Kanetkar

 Through his books and Quest Video Courses on C, C++, Java, Python, Data Structures, .NET, IoT, etc. Yashavant Kanetkar has created, molded and groomed lacs of IT careers in the last three decades. Yashavant’s books and Quest videos have made a significant contribution in creating top-notch IT manpower in India and abroad.

 Yashavant’s books are globally recognized and millions of students / professionals have benefitted from them. Yashavant’s books have been translated into Hindi, Gujarati, Japanese, Korean and Chinese languages. Many of his books are published in India, USA, Japan, Singapore, Korea and China.

 Yashavant is a much sought after speaker in the IT field and has conducted seminars/workshops at TedEx, IITs, IIITs, NITs and global software companies.

 Yashavant has been honored with the prestigious “Distinguished Alumnus Award” by IIT Kanpur for his entrepreneurial, professional and academic excellence. This award was given to top 50 alumni of IIT Kanpur who have made significant contribution towards their profession and betterment of society in the last 50 years.

 In recognition of his immense contribution to IT education in India, he has been awarded the “Best .NET Technical Contributor” and “Most Valuable Professional” awards by Microsoft for 5 successive years.

 Yashavant holds a BE from VJTI Mumbai and M.Tech. from IIT Kanpur. Yashavant’s current affiliations include being a Director of KICIT Pvt. Ltd. and KSET Pvt. Ltd. He can be reached at kanetkar@kicit.com or through http://www.kicit.com.

[image:]

 Aditya Kanetkar

 Aditya Kanetkar is currently working as a backend Software Engineer at Microsoft, Redmond, USA. He has been designing distributed systems software for the last 4 years. He has worked at multiple companies in the past, including Oracle, Redfin, Amazon and Arista Networks.

 Aditya holds a Master’s degree in Computer Science from Georgia Tech, Atlanta, and a Bachelor’s degree in Computer Science and Engineering from IIT Guwahati. His current passion is anything remotely connected to Python, Machine Learning, Distributed Systems, Cloud Computing and C# related technologies. Aditya can be reached at aditya@kicit.com or through http://www.kicit.com.

 Preface To Second Edition

 Programming landscape has changed significantly over the last few years. Python is making inroads into every field that has anything to do with programming. Naturally, Python programming is a skill that one has to acquire, earlier the better.

 If you have no programming background and you are learning Python as your first programming language you will find the book very simple to understand. Primary credit of this goes to the Python language—it is very simple for the beginner, yet very powerful for the expert who can tap into its power.

 If you have some acquaintance with a programming language, you need to get off the ground quickly. To do that you need to understand the similarities/differences in a feature that you have used in other language(s) and new features that Python offers. In both respects this book should help you immensely. Instead of explaining a feature with verbose text, we have mentioned the key points about it as ‘KanNotes’ and explained those points with the help of programs.

 The most important characteristic of this book is its simplicity—be it the code or the text. You will also notice that very few programming examples in this book are code fragments. We have realized that a program that actually compiles and runs, helps improve one’s understanding of a subject a great deal more, than just code snippets.

 Exercises are exceptionally useful to complete the reader’s understanding of a topic. So you will find one at the end of each chapter. Please do attempt them. They will really make you battle-ready. If you want solutions to these exercises then take a look at our book ‘Let Us Python Solutions’ that we are stitching together right now.

 The immense success of first edition of ‘Let Us Python’ has enthused us to pour our best efforts creating this second edition. Admittedly, in the first edition there were a few key places where the topic change was a bit jarring. To address this issue many chapters have been reorganized, split or combined. In addition many new chapters have been added in this edition.

 We have tried to write a Python book that makes reading it as much fun as the language is. Enjoy the book and your journey into the Python world!

 Brief Contents

 1 Introduction to Python

 2 Python Basics

 3 Strings

 4 Decision Control Instruction

 5 Repetition Control Instruction

 6 Console Input/Output

 7 Lists

 8 Tuples

 9 Sets

 10 Dictionaries

 11 Comprehensions

 12 Functions

 13 Recursion

 14 Functional Programming

 15 Modules and Packages

 16 Namespaces

 17 Classes and Objects

 18 Intricacies of Classes and Objects

 19 Containership and Inheritance

 20 Iterators and Generators

 21 Exception Handling

 22 File Input/Output

 23 Miscellany

 24 Multi-threading

 25 Synchronization

 Index

 Table of Content

 1 Introduction to Python

 What is Python?

 Reasons for Popularity

 What sets Python apart?

 What can be done using Python?

 Who uses Python today?

 Python Resources

 Programming Paradigms

 Functional Programming Model

 Procedural Programming Model

 Object-oriented Programming Model

 Event-driven Programming Model

 Exercise

 2 Python Basics

 Python Specification

 Working with Python

 Identifiers and Keywords

 Python Types

 Integer and Float Ranges

 Variable Type and Assignment

 Arithmetic Operators

 Operation Nuances

 Operator Precedence

 Conversions

 Built-in Functions

 Library Functions

 Python Type Jargon

 Comments and Indentation

 Multi-lining

 Programs

 Exercise

 3 Strings

 What are Strings?

 Accessing String Elements

 String Properties

 String Operations

 Programs

 Exercise

 4 Decision Control Instruction

 Decision Control Instruction

 Logical Operators

 Conditional Expressions

 Programs

 Exercise

 5 Repetition Control Instruction

 Repetition Control Instruction

 Usage of while and for

 break and continue

 pass Statement

 Programs

 Exercise

 6 Console Input/Output

 Console Input

 Console Output

 Formatted Printing

 Programs

 Exercise

 7 Lists

 What are Lists?

 Accessing List Elements

 Basic List Operations

 List Methods

 List Varieties

 Programs

 Exercise

 8 Tuples

 What are Tuples?

 More Ways to Create Tuples

 Accessing Tuple Elements

 Tuple Operations

 Tuple Varieties

 Programs

 Exercise

 9 Sets

 What are Sets?

 Accessing Set Elements

 Set Operations

 Set Methods

 Mathematical Set Operations

 Updating Set Operations

 Programs

 Exercise

 10 Dictionaries

 What are Dictionaries?

 Accessing Dictionary Elements

 Dictionary Operations

 Dictionary Methods

 Nested Dictionary

 Programs

 Exercise

 11 Comprehensions

 What are Comprehensions?

 List Comprehension

 Set Comprehension

 Dictionary Comprehension

 Programs

 Exercise

 12 Functions

 What are Functions?

 Communication with Functions

 Types of Arguments

 Unpacking Arguments

 Programs

 Exercise

 13 Recursion

 Recursive Functions

 Recursive Factorial Function

 Types of Recursion

 Recursion Limit

 Programs

 Exercise

 14 Functional Programming

 Functional Programming

 Functions as First-class Values

 Lambda Functions

 Higher Order Functions

 Map, Filter, Reduce

 map() Function

 filter() Function

 reduce() Function

 Using Lambda with map(), filter(), reduce()

 Where are they Useful?

 Programs

 Exercise

 15 Modules and Packages

 The Main Module

 Multiple Modules

 Importing a Module

 Variations of import

 Search Sequence

 Same Code, Different Interpretation

 Packages

 Third-party Packages

 Programs

 Exercise

 16 Namespaces

 Symbol Table

 Namespace

 globals() and locals()

 Where to use them?

 Inner Functions

 Scope and LEGB Rule

 Programs

 Exercise

 17 Classes and Objects

 Programming Paradigms

 What are Classes and Objects?

 Public and Private Members

 Class Declaration and Object Creation

 Object Initialization

 Class Variables and Methods

 vars() and dir() Functions

 vars() and dir() with Classes and Objects

 Programs

 Exercise

 18 Intricacies of Classes and Objects

 Identifier Naming Convention

 Calling Functions and Methods

 Operator Overloading

 Which Operators to Overload

 Everything is an Object

 Imitating a Structure

 Type Conversion

 Programs

 Exercise

 19 Containership and Inheritance

 Reuse Mechanisms

 Which to use When?

 Containership

 Inheritance

 What is Accessible where?

 isinstance() and issubclass()

 The object class

 Features of Inheritance

 Types of Inheritance

 Diamond Problem

 Abstract Classes

 Runtime Polymorphism

 Programs

 Exercise

 20 Iterators and Generators

 Iterables and Iterators

 zip() Function

 Iterators

 User-defined Iterators

 Generators

 Which to use When?

 Generator Expressions

 Programs

 Exercise

 21 Exception Handling

 What may go Wrong?

 Syntax Errors

 Exceptions

 How to deal with Exceptions?

 How to use try - except?

 Nuances of try and except

 User-defined Exceptions

 else Block

 finally Block

 Exception Handling Tips

 Programs

 Exercise

 22 File Input/Output

 I/O System

 File I/O

 Read / Write Operations

 File Opening Modes

 with Keyword

 Moving within a File

 Serialization and Deserialization

 Serialization of User-defined Types

 File and Directory Operations

 Programs

 Exercise

 23 Miscellany

 Documentation Strings

 Command-line Arguments

 Parsing of Command-line

 Bitwise Operators

 Assertion

 Decorators

 Decorating Functions with Arguments

 Unicode

 bytes Datatype

 Programs

 Exercise

 24 Multi-threading

 Types of Concurrencies

 Types of Multi-threading

 When to use Concurrency

 Thread Properties

 Launching Threads

 Passing Parameters to a Thread

 Programs

 Exercise

 25 Synchronization

 Synchronization

 Examples of Sharing Resources

 Example of Communication between Threads

 Mechanisms for Sharing Resources

 Lock

 RLock

 Semaphore

 Mechanisms for inter-thread Communication

 Event

 Condition

 Programs

 Exercise

 Index

 1

 Introduction to Python

 	What is Python?

 	Reasons for Popularity

 	What sets Python apart?

 	What can be done using Python?

 	Who uses Python today?

 	Python Resources

 	Programming Paradigms

 	Functional Programming Model

 	Procedural Programming Model

 	Object-oriented Programming Model

 	Event-driven Programming Model

 	Exercise

 KanNotes

 What is Python?

 	Python is a high-level programming language created by Guido Van Rossum - fondly known as Benevolent Dictator For Life.

 	Python was first released in 1991. Today Python interpreters are available for many Operating Systems including Windows and Linux.

 	Python programmers are often called Pythonists or Pythonistas.

 Reasons for Popularity

 	There are several reasons for Python’s popularity. These include:

	Free:
- Python is free to use and distribute and is supported by community.

- Python interpreter is available for every major platform.

	Software quality:
- Better than traditional and scripting languages.

- Readable code, hence reusable and maintainable.

- Support for advance reuse mechanisms.

	Developer productivity:
- Much better than statically typed languages.

- Much smaller code.

- Less to type, debug and maintain.

- No lengthy compile and link steps.

	Program portability:
- Python programs run unchanged on most platforms.

- Python runs on every major platform currently in use.

- Porting program to a new platform usually need only cut and paste. This is true even for GUI, DB access, Web programming, OS interfacing, Directory access, etc.

	Support libraries:
- Strong library support from Text pattern matching to networking.

- Vast collection of third party libraries.

- Libraries for Web site construction, Numeric programming, Game development, Machine Learning etc.

	Component integration:
- Can invoke C, C++ libraries and Java components.

- Can communicate with frameworks such as COM, .NET.

- Can interact over networks with interfaces like SOAP, XML-RPC, CORBA.

- With appropriate glue code, Python can subclass C++, Java, C#. classes, thereby extending the reach of the program.

- Popularly used for product customization and extension.

	Enjoyment:
- Ease of use.

- Built-in toolset.

- Programming becomes pleasure than work.

 What sets Python apart?

 	Powerful:
- Dynamic typing

- No variable declaration

- Automatic allocation and Garbage Collection

- Supports classes, modules and exceptions

- Permits componentization and reuse

- Powerful containers - Lists, Dictionaries, Tuples, etc.

 	Ready-made stuff:
- Support for operations like joining, slicing, sorting, mapping, etc.

- Powerful library

- Large collection of third-party utilities

 	Ease of use:
- Type and run

- No compile and link steps

- Interactive programming experience

- Rapid turnaround

- Programs are simpler, smaller and more flexible

 What can be done using Python?

 	Python is used for multiple purposes. These include:

	System programming

	Building GUI applications

	Internet scripting

	Component integration

	Database programming

	Rapid prototyping

	Numeric and Scientific programming

	Game programming

	Robotics programming

 Who uses Python today?

 	Many organizations use Python for varied purposes. These include:

	Google - In web search system

	YouTube - Video Sharing service

	Bit-torrent - Peer to Peer file sharing system

	Intel, HP, Seagate, IBM, Qualcomm - Hardware testing

	Pixar, Industrial Light and Magic - Movie animation

	JP Morgan, Chase, UBS - Financial market forecasting

	NASA, FermiLab - Scientific programming

	iRobot - Commercial robot vacuum cleaners

	NSA - Cryptographic and Intelligence analysis

	IronPort - Email Servers

 Python Resources

 	Python source code, binaries and documentation is available at:
- Python official website: www.python.org

- Documentation website: www.python.org/doc

 	Once Python is installed, program development can be done using the built-in Python Integrated Development and Learning Environment (IDLE) or third-party IDEs.

 	Third-party development tools include:
- NetBeans IDE for Python:
https://download.netbeans.org/netbeans/6.5/python/ea/

- PyCharm IDE for Python:
https://www.jetbrains.com/pycharm

- Visual Studio Code IDE:
https://code.visualstudio.com/download

 	If you do not wish to install any Python development tool on your machine, then you can use any of the following online Python shells:
- https://www.python.org/shell/

- https://ideone.com/

- https://repl.it/languages/python3

 Programming Paradigms

 	Paradigm means organization principle. It is also known as model.

 	Programming paradigm /model is a style of building the structure and elements of computer programs.

 	There exist many programming models like Functional, Procedural, Object-oriented, Event-driven, etc.

 	Many languages facilitate programming in one or more paradigms. For example, Python supports Functional, Procedural, Object-oriented and Event-driven programming models.

 	There are situations when Functional programming is the obvious choice, and other situations were Procedural programming is the better choice.

 	Paradigms are not meant to be mutually exclusive. A single program may use multiple paradigms.

 Functional Programming Model

 	Functional programming decomposes a problem into a set of functions. These functions provide the main source of logic in the program.

 	Functions take input parameters and produce outputs. Python provides functional programming techniques like lambda, map, reduce and filter. These are discussed in Chapter 14.

 	In this model computation is treated as evaluation of mathematical functions. For example, to get factorial value of a number, or nth Fibonacci number we can use the following functions:

[image:]

 	The output value of a function depends only on its arguments, so calling a function with the same value for an argument always produces the same result. As a result, it is a good fit for parallel execution

 	No function can have side effects on other variables (state remains unaltered).

 	Functional programming model is often called a ‘D eclarative’ programming paradigm as programming is done with expressions or declarations instead of statements.

 Procedural Programming Model

 	Procedural programming solves the problem by implementing one statement (a procedure) at a time. Thus it contains explicit steps that are executed in a specific order.

 	It also uses functions, but these are not mathematical functions like the ones used in functional programming. Functional programming focuses on expressions, whereas Procedural programming focuses on statements.

 	The statements don’t have values and instead modify the state of some conceptual machine.

 	Same language expression can result in different values at different times depending on the global state of the executing program. Also, the functions may change a program’s state.

 	Procedural programming model is often called ‘Imperative’ programming as it changes state with an explicit sequence of statements.

 Object-oriented Programming Model

 	This model mimics the real world by creating inside the computer a mini-world of objects.

 	In a University system objects can be VC, Professors, Non-teaching staff, students, courses, semesters, examinations, etc.

 	Each object has a state (values) and behavior (interface/methods). Objects get state and behavior based on the class from which it created.

 	Objects interact with one another by sending messages to each other, i.e. by calling each other’s interface methods.

 Event-driven Programming Model

 	This model is popularly used for programming GUI applications containing elements like windows, check boxes, buttons, combo-boxes, scroll bars, menus, etc.

 	When we interact with these elements (like clicking a button, or moving the scrollbar or selecting a menu item) events occur and these elements emit messages. There are listener methods which are registered with these GUI elements which react to these events.

 	Since there is no guaranteed sequence in which events may occur (based on how we interact with GUI elements), the listeners should be able to handle them in asynchronous manner.

 Exercise

 [A] Answer the following:

 	Mention 5 fields in which Python is popularly used.

 	Where is event-driven programming popularly used?

 	Why Python is called portable language?

 	What is the single most important feature of different programming models discussed in this chapter?

 	Which of the following is not a feature of Python?
- Static typing

- Variable declaration before use

- Destruction of objects after use through destructor

- Run-time error handling through error numbers

- Library support for containers like Lists, Dictionaries, Tuples

 [B] State whether the following statements are True or False:

 	Python is free to use and distribute.

 	Same Python program can work on different OS - microprocessor combinations.

 	It is possible to use C++ or Java libraries in a Python program.

 	In Python type of the variable is decided based on its usage.

 	Python cannot be used for building GUI applications.

 	Python supports functional, procedural, object-oriented and event-driven programming models.

 [C] Match the following:

 	a. Functional programming
 	1. GUI element based interaction

 	b. Event-driven programming
 	2. Interaction of objects

 	c. Procedural programming
 	3. Statements

 	d. Object-oriented programming
 	4. Maths-like functions

 [D] Fill in the blanks:

 	Functional programming paradigm is also known as _______ programming model.

 	Procedural programming paradigm is also known as _______ programming model.

 	Python was created by_______.

 	Python programmers are often called_______.

 2

 Python Basics

 	What is Pythonx

 	Working with Python

 	Identifiers and Keywords

 	Python Types

 	Integer and Float Ranges

 	Variable Type and Assignment

 	Arithmetic Operators

 	Operation Nuances

 	Operator Precedence

 	Conversions

 	Built-in Functions

 	Library Functions

 	Python Type Jargon

 	Comments and Indentation

 	Multiz-lining

 	Programs

 	Exercise

 KanNotes

 Python Specification

 	Python is a specification for a language that can be implemented in many different ways. There are many implementations of this specification written in different languages.

 	Different popular Python implementations are:
CPython - is the reference implementation, written in C.

PyPy - Written in a subset of Python language called RPython.

Jython - Written in Java.

IronPython - Written in C#.

 	All the implementations are compilers as well as interpreters. The compiler converts the Python program into intermediate bytecode. This bytecode is then interpreted by the interpreter.

 Working with Python

 	Python programming modes:
- Interactive mode - used for exploring Python syntax, seek help and debug short programs

- Script mode - used for writing full-fledged Python programs

 	Interactive mode uses IDLE (Python Integrated Development and Learning Environment).

 	To use IDLE:
- Locate it in Windows by typing IDLE and double click it.

- It will open the Python shell window showing >>> Python shell prompt.

- Execute the following Python code at this prompt.
>>> print(‘Keep calm and bubble on’)

- It displays the message followed by the >>> prompt.

 	To execute a Python program in Script mode:
- Create a new Python project ‘Test’ in NetBeans or Visual Studio Code.

- Type the following script in Test.py.
print(‘Those who can’t laugh at themselves…’)
print(‘leave the job to others’)

- Execute the script using F6 in NetBeans or Ctrl F5 in Visual Studio Code.

- On execution it will print the two lines and then you are ready to create another project and another script in it.

 	You can execute a script even in IDLE. Go to File | New File, type the program and save it. Execute it from the Run menu or using F5.

 	Python has evolved over the years. At the time of writing of this book, version 3.7.3 is prevalent.

 	You can determine the version installed on your machine through the statements:
import sys
print(sys.version)

 Identifiers and Keywords

 	Python is a case sensitive language.

 	Python identifier is a name used to identify a variable, function, class, module, or other object.

 	Rules for creating identifiers:
- Starts with alphabet or an underscore

- Followed by zero or more letters, _, and digits

- keyword cannot be used as identifier

 	All keywords are in lowercase.

 	Python has 33 keywords that are given below.

[image:]

 	You can obtain a list of Python keywords through the statements:
import keyword

print(keyword.kwlist)

 Python Types

 	Python built-in types:
Basic types - int, float, complex, bool, string, bytes

Container types - list, tuple, set, dict

User-defined - class

 	Examples of different types:
int can be expressed in binary, decimal, octal, hexadecimal

binary starts with 0b/0B, octal with 0o/0O, hex with 0x/0X 0b10111, 156, 0o432, 0x4A3

float can be expressed in fractional or exponential form

- 314.1528, 3.141528e2, 3.141528E2

complex contains real and imaginary part

3 + 2j, 1 + 4J

bool can take any of the two Boolean values

True, False

string is an immutable collection of Unicode characters

‘Razzmatazz’, “Razzmatazz”, “““Razzmatazz”””

bytes represent binary data

b‘\xa1\xe4\x56’ # represents 3 bytes with hex values a1a456

list is a indexed collection of similar/dissimilar entities

[10, 20, 30, 20, 30, 40, 50, 10], [‘She’, ‘sold’, 10, ‘shells’’]

tuple is an immutable collection

(‘Sanjay’, 34, 4500.55), (‘Let Us Python’, 350, 195.00)

set is a collection of unique values

{10, 20, 30, 40}, {‘Sanjay’, 34, 45000}

dict is a collection of key-value pairs, with unique keys

{‘ME101’: ‘Strength of materials’, ‘EE101’: ‘Electronics’}

 Integer and Float Ranges

 	int can be of any arbitrary size
a = 123

b = 1234567890

c = 123456789012345678901234567890

Python has arbitrary precision integers. Hence you can create as big integers as you want. Moreover, arithmetic operations can be performed on integers without worrying about overflow/underflow.

 	Floats are represented internally in binary as 64-bit double-precision values, as per the IEEE 754 standard. As per this standard, the maximum value a float can have is approximately 1.8 x 10308. A number greater than this is represented as inf (short for infinity).

 	Many floats cannot be represented ‘exactly’ in binary form. So the internal representation is often an approximation of the actual value.

 	The difference between the actual value and the represented value is very small and should not usually cause significant problems.

 Variable Type and Assignment

 	No need to define type of a variable. Type is inferred from the context in which the variable is being used.

	a = 25

	# type of a is inferred as int

	a = 31.4

	# type of a is inferred as float

	a = ‘Hi’

	# type of a is inferred as str

 	Type of a variable can be checked using the built-in function type().
a = ‘Jamboree’

print(type(a)) # type will be reported as str

 	Simple variable assignment:
a = 10

pi = 3.14

name = ‘Sanjay’

 	Multiple variable assignment:
a = 10; pi = 31.4; name = ‘Sanjay’ # use; as statement separator

a, pi, name = 10, 3.14, ‘Sanjay’

a = b = c = d = 5

 Arithmetic Operators

 	Arithmetic operators: + - * / % // **
a = 4 /2 # performs true division and yields a float 2.0

a = 7 % 2 # % yields remainder 1

b = 3 ** 4 # ** yields 3 raised to 4 (exponentiation)

c = 4 // 3 # // yields quotient 1 after discarding fractional part

 	In-place operators offer a good shortcut for arithmetic operations. These include += -= *= /= %= //= **=.
a **= 3 # same as a = a ** 3

b %= 10 # same as b = b % 10

 Operation Nuances

 	On performing floor division a // b, result is the largest integer which is less than or equal to the quotient.

	print(10 // 3)

	# yields 3

	print(-10 // 3)

	# yields -4

	print(10 // -3)

	# yields -4

	print(-10 // -3)

	# yields 3

	print(3 // 10)

	# yields 0

	print(3 // -10)

	# yields -1

	print(-3 // 10)

	# yields -1

	print(-3 // -10) #

	yields 0

In -10 // 3, multiple of 3 which will yield -10 is -3.333, whose floor value is -4.

In 10 // -3, multiple of -3 which will yield 10 is -3.333, whose floor value is -4.

In -10 // -3, multiple of -3 which will yield -10 is 3.333, whose floor value is 3.

 	Operation a % b is evaluated as a - (b * (a // b))

	print(10 % 3)

	# yields 1

	print(-10 % 3)

	# yields 2

	print(10 % -3)

	# yields -2

	print(-10 % -3)

	# yields -1

	print(3 % 10)

	# yields 3

	print(3 % -10)

	# yields -7

	print(-3 % 10)

	# yields 7

	print(-3 % -10)

	# yields -3

Since a % b is evaluated as a - (b * (a // b)),

-10 % 3 is evaluated as -10 - (3 * (-10 // 3)), which yields 2

10 % -3 is evaluated as 10 - (-3 * (10 // -3)), which yields -2

-10 % -3 is evaluated as -10 - (-3 * (-10 // -3)), which yields -1

 	Mathematical rule a / b x c is same as a x c / b holds, but not always.
following expressions give same results

a = 300 / 100 * 250

a = 300 * 250 / 100

However, these don’t

b = 1e210 / 1e200 * 1e250

b = 1e210 * 1e250 / 1e200 # gives INF

 	Since True is 1 and False is 0, they can be added.

	a = True + True

	# stores 2

	b = True + False

	# stores 1

 Operator Precedence

 	When multiple operators are used in an arithmetic expression, it is evaluated on the basis of precedence (priority) of the operators used.

 	Operators in decreasing order of their priority (PEMDAS):

	()

	# Parentheses

	**

	# Exponentiation

	*, /, //, %

	# Multiplication, Division

	+, -

	# Addition, Subtraction

 Conversions

 	Mixed mode operations:
- Operation between int and float will yield float

- Operation between int and complex will yield complex

- Operation between float and complex will yield complex

 	We can convert one numeric type to another using built-in functions int(), float(), complex() and bool().

 	Type conversions:

	int(float/numeric string)

	# from float/numeric string to int

	int(numeric string, base)

	# from numeric string to int in base

	float(int/numeric string)

	# from int/numeric string to float

	float(int)

	# from int to float

	complex(int/float)

	# convert to complex with imaginary part 0

	complex(int/float, int/float)

	# convert to complex

	bool(int/float)

	# from int/float to True/False (1/0)

	str(int/float/bool)

	# converts to string

	chr(int)

	# yields character corresponding to int

 	int() removes the decimal portion from the quotient, so always rounds towards zero.

	int (3.33)

	# yields 3

	int (-3.33)

	# yields -3

 Built-in Functions

 	Python has many built-in functions that are always available to the program. Some of them are related to mathematical operations. Help about any built-in function is available using help(function).

 	Built-in Mathematical functions:

	abs(x)

	# absolute value of x

	pow(x, y)

	# value of x raised to y

	min(x1, x2,…)

	# smallest argument

	max(x1, x2,…)

	# largest argument

	divmod(x, y)

	# returns a pair(x // y, x % y)

	bin(x)

	# binary equivalent

	oct(x)

	# octal equivalent

	hex(x)

	# hexadecimal equivalent

	round(x [,n])

	# x rounded to n digits after decimal point

 Library Functions

 	For performing sophisticated mathematical operations we can use the functions present in modules math, cmath, random, decimal.
math - many useful mathematics functions

cmath - functions for performing operations on complex numbers

random - functions related to random number generation

decimal - functions for performing precise arithmetic operations

 	Mathematical functions in math module:

	pi, e

	# constants

	sqrt(x)

	# square root of x

	factorial(x)

	# factorial of x

	fabs(x)

	# absolute value of float x

	log(x)

	# natural log of x (log to the base e)

	log10(x)

	# base-10 logarithm of x

	exp(x)

	# e raised to x

	trunc(x)

	# truncates to integer

	ceil(x)

	# smallest integer >= x

	floor(x)

	# largest integer <= x

	modf(x)

	# fractional and integer parts of x

 	round() function can round to a specific number of decimal places, whereastrunc(), ceil() and floor() always round to zero decimal places.

 	Trigonometric functions in math module:

	pi, e

	# mathematical constants

	degrees(x)

	# radians to degrees

	radians(x)

	# degrees to radians

	sin(x)

	# sine of x radians

	cos(x)

	# cosine of x radians

	tan(x)

	# tan of x radians

	sinh(x)

	# hyperbolic sine of x

	cosh(x)

	# hyperbolic cosine of x

	tanh(x)

	# hyperbolic tan of x

	acos(x)

	# cos inverse of x, in radians

	asin(x)

	# sine inverse of x, in radians

	atan(x)

	# tan inverse of x, in radians

	hypot(x, y)

	# sqrt(x * x + y * y)

 	Random number generation functions from random module:

	random()

	# random number between 0 and 1

	randint(start, stop)

	# random number in the range

	seed()

	# sets current time as seed for random number generation

	seed(x)

	# sets x as seed for random number generation logic

 	print() function can be used for sending output to screen. There are many variations possible. They will be discussed in chapters to follow.

 	To use functions present in a module, we need to import the module using the import statement.

 Python Type Jargon

 	Often following terms are used while describing Python types:

	Collection

	- a generic term for container types

	Ordered collection

	- elements of the collection have a specific order

- element can be accessed using an index

	Unordered collection

	- elements are in any order

- element cannot be accessed using an index Sequence is the generic term for an ordered collection

	Immutable

	- means unchangeable

	Mutable

	- means changeable

	Iterable

	- means a type that can be iterated over using a loop

 	Let us now see which of these terms apply to types that we have seen so far.

	String

	- ordered collection, immutable, iterable

	List

	- ordered collection, mutable, iterable

	Tuple

	- ordered collection, immutable, iterable

	Set

	- unordered collection, mutable, iterable

	Dictionary

	- unordered collection, mutable, iterable

 Comments and Indentation

 	Comments begin with #.
calculate gross salary

gs = bs + da + hra + ca

si = p * n * r / 100 # calculate simple interest

 	Multi-line comments should be written in a pair of ”””or“““.
’’’Purpose: Calculate bonus to be paid

Team: ResourceManagement

Author: Sudeep, Date: 18 Jan 2020 ’’’

 	Indentation matters! Don’t use it casually. Following code will report an error.
a = 20

b = 45

 	Use either 4 spaces or a tab for indentation. Don’t mix tabs and spaces. They may appear ok on screen, but would be reported as error.

 Multi-lining

 	If statements are long they can be written as multi-lines with each line except the last ending with a .
total = physics + chemistry + maths + \

english + Marathi + history + \

geography + civics

 	Multi-line statements within [], {}, or () don’t need . days = [‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Sunday’]

 Programs

 Problem 2.1

 Demonstrate use of integer types and operators that can be used on them.

 Program

 # use of integer types

 print(3 / 4)

 print(3 % 4)

 print(3 // 4)

 print(3 ** 4)

 a = 10; b = 25; c = 15; d = 30; e = 2; f = 3; g = 5

 w = a + b - c

 x = d ** e

 y = f % g

 print(w, x, y)

 h = 99999999999999999

 i = 54321

 print(h * i)

 Output

 0.75

 3

 0

 81

 20 8 1

 5432099999999999945679

 Tips

 	3 / 4 doesn’t yield 0.

 	Multiple statements in a line should be separated using;

 	print(w, x, y) prints values separated by a space.

 	There is no precision limit on integers.

 Problem 2.2

 Demonstrate use of float, complex and bool types and operators that can be used on them.

 Program

 # use of float

 i = 3.5

 j = 1.2

 print(i % j)

 # use of complex

 a = 1 + 2j

 b = 3 *(1 + 2j)

 c = a * b

 print(a)

 print(b)

 print(c)

 print(a.real)

 print(a.imag)

 print(a.conjugate())

 # use of bool

 x = True

 print(a)

 y = 3 > 4

 print(x)

 print(y)

 Output

 1.1

 (1+2j)

 (3+6j)

 (-9+12j)

 1.0

 2.0

 (1-2j)

 (1+2j)

 True

 False

 Tips

 	% works on floats.

 	It is possible to obtain real and imag part from a complex number.

 	On evaluation of a condition it replaced by True or False.

 Problem 2.3

 Demonstrate how to convert from one number type to another.

 Program

 # convert to int

 print(int(3.14)) # from float to int

 a = int(‘485’) # from numeric string to int

 b = int(‘768’) # from numeric string to int

 c = a + b

 print(c)

 print(int(‘1011’, 2)) # convert from binary to decimal int

 print(int(‘341’, 8)) # convert from octal to decimal int

 print(int(‘21’, 16)) # convert from hex to decimal int

 # convert to float

 print(float(35)) # from int to float

 i = float(‘4.85’) # from numeric string to float

 j = float(‘7.68’) # from numeric string to float

 k = i + j

 print(k)

 # convert to complex

 print(complex(35)) # from int to float

 x = complex(4.85, 1.1) # from numeric string to float

 y = complex(7.68, 2.1) # from numeric string to float

 z = x + y

 print(z)

 # convert to bool

 print(bool(35))

 print(bool(1.2))

 print(int(True))

 print(int(False))

 Output

 3

 1253

 11

 225

 33

 35.0

 12.53

 (35+0j)

 (12.53+3.2j)

 True

 True

 1

 0

 Tips

 	It is possible to convert a binary numeric string, octal numeric string or hexadecimal numeric string to equivalent decimal integer. Same cannot be done for a float.

 	While converting to complex if only one argument is used, imaginary part is considered to be 0.

 	Any non-zero number (int or float) is treated as True. 0 is treated as False.

 Problem 2.4

 Write a program that makes use of built-in mathematical functions.

 Program

 # built-in math functions

 print(abs(-25))

 print(pow(2, 4))

 print(min(10, 20, 30, 40, 50))

 print(max(10, 20, 30, 40, 50))

 print(divmod(17, 3))

 print(bin(64), oct(64), hex(64))

 print(round(2.567), round(2.5678, 2))

 Output

 25

 16

 10

 50

 (5, 2)

 0b1000000 0o100 0x40

 3 2.57

 Tips

 	divmod(a, b) yields a pair (a // b, a % b).

 	bin(), oct(), hex() return binary, octal and hexadecimal equivalents.

 	round(x) assumes that rounding-off has to be done with 0 places beyond decimal point.

 Problem 2.5

 Write a program that makes use of functions in the math module.

 Program

 # mathematical functions from math module

 import math

 x = 1.5357

 print (math.pi, math.e)

 print(math.sqrt(x))

 print(math.factorial(6))

 print(math.fabs(x))

 print(math.log(x))

 print(math.log10(x))

 print(math.exp(x))

 print(math.trunc(x))

 print(math.floor(x))

 print(math.ceil(x))

 print(math.trunc(-x))

 print(math.floor(-x))

 print(math.ceil(-x))

 print(math.modf(x))

 Output

 3.141592653589793 2.718281828459045

 1.2392336341465238

 720

 1.5357

 0.42898630314951025

 0.1863063842699079

 4.644575595215059

 1

 1

 2

 -1

 -2

 -1

 (0.5357000000000001, 1.0)

 Tips

 	floor() rounds down towards negative infinity, ceil() rounds up towards positive infinity, trunc() rounds up or down towards 0.

 	trunc() is like floor() for positive numbers.

 	trunc() is like ceil() for negative numbers.

 Problem 2.6

 Write a program that generates float and integer random numbers.

 Program

 # random number operations using random module

 import random

 import datetime

 random.seed(datetime.time())

 print(random.random())

 print(random.random())

 print(random.randint(10, 100))

 Output

 0.23796462709189137

 0.5442292252959519

 57

 Tips

 	It is necessary to import random module.

 	If we seed the random number generation logic with current time, we get different random numbers on each execution of the program.

 Exercise

 [A] Answer the following:

 	Write a program that swaps the values of variables a and b. You are not allowed to use a third variable. You are not allowed to perform arithmetic on a and b.

 	Write a program that makes use of trigonometric functions available in math module.

 	Write a program that generates 5 random numbers in the range 10 to 50. Use a seed value of 6. Make a provision to change this seed value every time you execute the program by associating it with time of execution?

 	Use trunc(), floor() and ceil() for numbers -2.8, -0.5, 0.2, 1.5 and 2.9 to understand the difference between these functions clearly.

 	Assume a suitable value for Ramesh’s basic salary. His dearness allowance is 40% of basic salary, and house rent allowance is 20% of basic salary. Write a program to calculate his gross salary.

 	Assume a suitable value for distance between two cities (in km.). Write a program to convert and print this distance in meters, feet, inches and centimeters.

 	Assume a suitable value for temperature of a city in Fahrenheit degrees. Write a program to convert this temperature into Centigrade degrees and print both temperatures.

 [B] How will you perform the following operations:

 	Print imaginary part out of 2 + 3j

 	Obtain conjugate of 4 + 2j

 	Convert binary ‘1100001110’ into decimal int

 	Convert a float value 4.33 into a numeric string

 	Obtain integer quotient and remainder while dividing 29 with 5

 	Obtain hexadecimal equivalent of decimal 34567

 	Round-off 45.6782 to second decimal place

 	Obtain 4 from 3.556

 	Obtain 17 from 16.7844

 	Obtain remainder on dividing 3.45 with 1.22

 [C] Which of the following is invalid variable name and why?

 	
 BASICSALARY

 	
 _basic

 	
 basic-hra

 	
 #MEAN

 	
 group.

 	
 422

 	
 pop in 2020

 	
 over

 	
 timemindovermatter

 	
 SINGLE

 	
 hELLO

 	
 queue.

 	
 team’svictory

 	
 Plot # 3

 	
 2015_DDay

 	

 [D] Evaluate the following expressions:

 	2 ** 6 // 8 % 2

 	9 ** 2 // 5 - 3

 	10 + 6 - 2 % 3 + 7 - 2

 	5 % 10 + 10 -23 * 4 // 3

 	5 + 5 // 5 - 5 * 5 ** 5 % 5

 	7 % 7 + 7 // 7 - 7 * 7

 [E] Evaluate the following expressions:

 	min(2, 6, 8, 5)

 	bin(46)

 	round(10.544336, 2)

 	hypot(6, 8)

 	modf(3.1415)

 [F] Match the following:

 	
 a. IDLE

 	
 1. \

 	
 b. Escape special character

 	
 2. Python interactive mode

 	
 c. Extension for python script

 	
 3. Python shell prompt

 	
 d. Quickly test a Python feature

 	
 4. Script

 	
 e. complex

 	
 5. Container type

 	
 f. Preserve program

 	
 6. py

 	
 g. Tuple

 	
 7. Basic type

 	
 h. Natural logarithm

 	
 8. log()

 	
 i. Common logarithm

 	
 9. log10()

 3

 Strings

 	What are Strings?

 	Accessing String Elements

 	String Properties

 	String Operations

 	Programs

 	Exercise

 KanNotes

 What are Strings?

 	Python string is a collection of Unicode characters.

 	Python strings can be enclosed in single, double or triple quotes.
‘BlindSpot’

“BlindSpot”

‘“BlindSpot”’

“““Blindspot”””

 	If there are characters like‘” or \ within a string, they can be retained in two ways:

	Escape them by preceding them with a \

	Prepend the string with a ‘r’ indicating that it is a raw string

msg = ‘He said, \‘Let Us Python.\’’

msg = r‘He said, ‘Let Us Python.’’

 	Multiline strings can be created in 3 ways:
- All but the last line ends with \

- Enclosed within “““some msg””” or ‘“some msg”’

- (‘one msg’ ‘another msg’)

 Accessing String Elements

 	String elements can be accessed using an index value, starting with 0. Negative index value is allowed. The last character is considered to be at index -1. Positive and negative indices are show in the following figure.

[image:]

 	Examples of positive and negative indexing:

	msg = ‘Hello’

	a = msg[0]

	# yields H

	b = msg[4]

	# yields o

	c = msg[-0]

	# yields H, -0 is same as 0

	d = msg[-1]

	# yields o

	e = msg[-2]

	# yields l

	f = msg[-5]

	# yields H

 	A sub-string can be sliced out of a string.
s[start : end] - extract from start to end - 1

s[start :] - extract from start to end

s[: end] - extract from start to end - 1

s[-start :] - extract from -start (included) to end

s[: -end] - extract from beginning to -end - 1

 	Using too large an index reports an error, but using too large index while slicing is handled elegantly.

	msg = ‘Rafting’

	print(msg[3:100])

	# prints elements from ‘t’ up to end of string

	print(msg[100])

	# error since 100th element doesn’t exist

 String Properties

 	All strings are objects of built-in type str.
msg = ‘Surreal’

print(type(msg))

yields <class ‘str’>

 	Python strings are immutable—they cannot be changed.
s = ‘Hello’

s[0] = ‘M’ # rejected, attempt to mutate string

s = ‘Bye’ # s is a variable, it can change

 	Strings can be concatenated using +.
msg3 = ms1 + msg2

 	Strings can be replicated during printing
print(‘-’, 50) # prints 50 dashes

 	Whether one string is part of another can be found out using in.
print(‘e’ in ‘Hello’) # prints True

print(‘z’ in ‘Hello’) # print False

print(‘lo’ in ‘Hello’) # prints True

 String Operations

 	Many built-in string functions are available. The syntax to use them is string.function() as shown below.

	msg = ‘Hello’

	print(msg.upper())

	# prints HELLO

	print(‘Hello’.upper())

	# prints HELLO

 	Different categories of string functions are given below.
Content test functions

isalpha() - checks if all characters in string are alphabets

isdigit() - checks if all characters in string are digits

isalnum() - checks if all characters in string are alphabets or digits

islower() - checks if all characters in string are lowercase alphabets

isupper() - checks if all characters in string are uppercase alphabets

startswith() - checks if string starts with a value

endswith() - checks if string ends with a value

Conversions

upper() - converts string to uppercase

lower() - converts string to uppercase

capitalize() - converts first character of string to uppercase

swapcase() - swap cases in the string

search and replace

find() - searches for a value, returns its position

replace() - replace one value with another

lstrip() - trim the string from left rstrip() - trim the string from right

split() - split the string at a specified separator string

partition() - partitions string into 3 parts at first occurrence of specified string

 	str() function returns a numeric string for its numeric argument
age = 25

print(‘She is’ + str(age) + ‘years old’)

 	chr() returns a string representing its Unicode value (known as code point). ord() does the reverse.

	ord(‘A’)

	# yields 65

	chr(65)

	# yields A

 Programs

 Problem 3.1

 Demonstrate how to create simple and multi-line strings and whether a string can change after creation.

 Program

 # simple and multiline strings

 msg1 = ‘Hoopla’

 print(msg1)

 # escape sequence

 msg2 = ‘He said, \‘Let Us Python\’.’

 print(msg2)

 file1 = ‘C:\temp\newfile’

 print(file1)

 # raw string - prepend r

 file2 = r’C:\temp\newfile’

 print(file2)

 # multiline strings

 # whitespace at beginning of second line becomes part of string

 msg3 = ‘What is this life if full of care…\

 We have no time to stand and stare’

 # enter at the end of first line becomes part of string

 msg4 = “““What is this life if full of care…

 We have no time to stand and stare”””

 # strings are concatenated properly.() necessary

 msg5 = (‘What is this life if full of care…’

 ‘We have no time to stand and stare’)

 print(msg3)

 print(msg4)

 print(msg5)

 # string replication during printing

 msg6 = ‘MacLearn!!’

 print(msg1 * 3)

 # immutability of strings

 # Utopia cannot change, msg7 can

 msg7 = ‘Utopia’

 msg8 = ‘Today!!!’

 msg7 = msg7 + msg8 # concatenation using +

 print(msg7)

 # built-in string function

 print(len(msg7))

 Output

 Hoopla

 He said, ‘Let Us Python’.

 C:\temp\newfile

 C:\temp\newfile

 What is this life if full of care… We have no time to stand and state

 What is this life if full of care…

 We have no time to stand and state

 What is this life if full of care…We have no time to stand and state

 HooplaHooplaHoopla

 UtopiaToday!!!

 14

 Tips

 	Special characters can be retained in a string by either escaping them or by marking the string as a raw string

 	Strings cannot change, but the variables that store them can.

 	len() is a built-in function that returns the number of characters present in string.

 Problem 3.2

 For a given string ‘Bamboozled’, write a program to obtain the following output:

 B a

 e d

 e d

 mboozled

 mboozled

 mboozled

 Bamboo

 Bamboo

 Bamboo

 Bamboo

 delzoobmaB

 Bamboozled

 Bmoze

 Bbzd

 Boe

 BamboozledHype!

 BambooMonger!

 Use multiple ways to get any of the above outputs.

 Program

 s = ‘Bamboozled’

 # extract B a

 print(s[0], s[1])

 print(s[-10], s[-9])

 # extract e d

 print(s[8], s[9])

 print(s[-2], s[-1])

 # extract mboozled

 print(s[2:10])

 print(s[2:])

 print(s[-8:])

 # extract Bamboo

 print(s[0:6])

 print(s[:6])

 print(s[-10:-4])

 print(s[:-4])

 # reverse Bamboozled

 print([::-1])

 print(s[0:10:1])

 print(s[0:10:2])

 print(s[0:10:3])

 print(s[0:10:4])

 s = s + ‘Hype!’

 print(s)

 s = s[:6] + ‘Monger’ + s[-1]

 print(s)

 Tips

 	Special characters can be retained in a string by either escaping them or by marking the string as a raw string

 	s[4:8] is same as s[4:8:1], where 1 is the default

 	s[4:8:2] returns a character, then move forward 2 positions, etc.

 Problem 3.3

 For the following strings find out which are having only alphabets, which are numeric, which are alphanumeric, which are lowercase, which are uppercase. Also find out whether ‘And Quiet flows the Don’ begins with ‘And’ or ends with ‘And’ :

 ‘NitiAayog’

 ‘And Quiet Flows The Don’

 ‘1234567890’

 ‘Make $1000 a day’

 Program

 s1 = ‘NitiAayog’

 s2 = ‘And Quiet Flows The Don’

 s3 = ‘1234567890’

 s4 = ‘Make $1000 a day’

 print(‘s1 = ’, s1)

 print(‘s2 = ’, s2)

 print(‘s3 = ’, s3)

 print(‘s4 = ’, s4)

 # Content test functions

 print(‘check isalpha on s1, s2’)

 print(s1.isalpha())

 print(s2.isalpha())

 print(‘check isdigit on s3, s4’)

 print(s3.isdigit())

 print(s4.isdigit())

 print(‘check isalnum on s1, s2, s3, s4’)

 print(s1.isalnum())

 print(s2.isalnum())

 print(s3.isalnum())

 print(s4.isalnum())

 print(‘check islower on s1, s2’)

 print(s1.islower())

 print(s2.islower())

 print(‘check isupper on s1, s2’)

 print(s1.isupper())

 print(s2.isupper())

 print(‘check startswith and endswith on s2’)

 print(s2.startswith(‘And’))

 print(s2.endswith(‘And’))

 Output

 s1 = NitiAayog

 s2 = And Quiet Flows The Don

 s3 = 1234567890

 s4 = Make $1000 a day

 check isalpha on s1, s2

 True

 False

 check isdigit on s3, s4

 True

 False

 check isalnum on s1, s2, s3, s4

 True

 False

 True

 False

 check islower on s1, s2

 False

 False

 check isupper on s1, s2

 False

 False

 check startswith and endswith on s2

 True

 False

 Problem 3.4

 Given the following string:

 ‘Bring It On’

 ‘Flanked by spaces on either side’

 ‘C:\Users\Kanetkar\Documents’

 write a program to produce the following output using appropriate string functions.

 BRING IT ON

 bring it on

 Bring it on

 bRING iT oN

 6

 9

 Bring Him On

 Flanked by spaces on either side

 Flanked by spaces on either side

 [‘C:’, ‘Users’, ‘Kanetkar’, ‘Documents’]

 (‘C:’, ‘\’, ‘Users\Kanetkar\Documents’)

 Program

 s1 = ‘Bring It On’

 # Conversions

 print(s1.upper())

 print(s1.lower())

 print(s1.capitalize())

 print(s1.swapcase())

 # search and replace

 print(s1.find(‘I’))

 print(s1.find(‘On’))

 print(s1.replace(‘It’, ‘Him’))

 # trimming

 s2 = ‘Flanked by spaces on either side’

 print(s2.lstrip())

 print(s2.rstrip())

 # splitting

 s3 = ‘C:\Users\Kanetkar\Documents’

 print(s3.split(‘\’))

 print(s3.partition(‘\’))

 Exercise

 [A] Answer the following:

 	Write a program that generates the following output from the string ‘Shenanigan’.
S h

a n

enanigan

Shenan

Shenan

Shenan

Shenan

Shenanigan

Seaia

Snin

Saa

ShenaniganType

ShenanWabbite

 	Write a program to convert the following string
‘an inferior lawyer with dubious practices’

into

‘An Inferior Lawyer With Dubious Practices’

 	Write a program to convert the following string
‘Light travels faster than sound. This is why some people appear bright until you hear them speak.’

into

‘LIGHT travels faster than SOUND. This is why some people appear bright until you hear them speak.’

 	What will be the output of the following program?
s = ‘HumptyDumpty’

print(‘s = ’, s)

print(s.isalpha())

print(s.isdigit())

print(s.isalnum())

print(s.islower())

print(s.isupper())

print(s.startswith(‘Hump’))

print(s.endswith(‘Dump’))

 	What is the purpose of a raw string?

 	What is the difference between the functions ord() and chr()?

 	Each string is an object of which built-in type?

 	If we are to work with individual word in the following string, how will you separate th em out:
‘The difference between stupidity and genius is that genius has its limits’

 [B] Match the following assuming msg = ‘Keep yourself warm’

 	
 a. msg.partition(‘’)

 	
 1. 18

 	
 b. msg.split(‘’)

 	
 2. KEEP YOURSELF WARM

 	
 c. msg.startswith(‘Keep’)

 	
 3. Keep yourself warm

 	
 d. msg.endswith(‘Keep’)

 	
 4. 3

 	
 e. msg.swapcase()

 	
 5. True

 	
 f. msg.capitalize()

 	
 6. False

 	
 g. msg.count(‘e’)

 	
 7. [‘Keep’, ‘yourself’, ‘warm’]

 	
 h. len(msg)

 	
 8. [‘Keep’, ‘’, ‘yourself warm’]

 4

 Decision Control Instruction

 	Decision Control Instruction

 	Logical Operators

 	Conditional Expressions

 	Programs

 	Exercise

 KanNotes

 	Program flow can be controlled using:

	Decision control instruction

	Repetition control instruction

 Decision Control Instruction

 	Three ways for taking decisions in a program:

[image:]

Note the: after if, else, elif. It is compulsory.

Note the indentation of statements in if block, else, block, elif block. it is compulsory.

 	Condition is built using relation operators <, >, <=, >=, ==, !=.

	10 < 20

	# yields True

	‘Santosh’ < ‘Adi’

	# yields False, alphabetical order is checked

	‘gang’ < ‘God’

	# yields False, lowercase is > uppercase

 	An if-else statement can be nested inside another if-else statement.

 	a = b is assignment, a == b is comparison.

 	Ranges or multiple equalities can be checked more naturally.

	if a < b < c

	# checks whether b falls between a and c

	if a == b == c

	# checks whether all three are equal

	if 10 != 20 != 10

	# evaluates to True, even though 10 != 10 is False

 	Any non-zero number (positive, negative, integer, float) is treated as True, and 0 as False.

	print(bool(3.14))

	# prints True

	print(bool(25))

	# prints True

	print(bool(0))

	# prints False

 	if-else statements can be nested.

 Logical Operators

 	More complex decision making can be done using logical operators and, or and not.

 	Conditions can be combined using and and or.
cond1 and cond2 - returns True if both are True, otherwise False

cond1 or cond2 - returns True if one of them is True, otherwise False

 	Strictly speaking, we need not always use only condition with and/or. We can use any valid expression in place of conditions. Hence when used with expressions we may not get True/False.

 	and operator evaluates ALL expressions. It returns last expression if all expressions evaluate to True. Otherwise it returns first value that evaluates to False.

	a = 40

	b = 30

	x = 75 and a >= 20 and b < 60 and 35

	# assigns 35 to x

	y = -30 and a >= 20 and b < 15 and 35

	# assigns False to y

	z = -30 and a >= 20 and 0 and 35

	# assigns 0 to z

 	or operator evaluates ALL expressions and returns the first value that evaluates to True. Otherwise it returns last value that evaluates to False.

	a = 40

	b = 30

	x = 75 or a >= 20 or 60

	# assigns 75 to x

	y = a >= 20 or 75 or 60

	# assigns True to y

	z = a < 20 or 0 or 35

	# assigns 35 to z

 	Conditions’ result can be negated using not.

	a = 10

	b = 20

	not (a <= b)

	# yields False. Same as a > b

	not (a >= b)

	# yields True. Same as a < b

 	Shortcut for toggling values between 1 and 0:
a = input(‘Enter 0 or 1’)

a = not a # set a to 0 if it is 1, and set it to 1 if it is 0.

 	a = not b does not change value of b.

 	If an operator needs only 1 operand it is known as Unary operator. If it needs two, then it is a binary operator.
not - needs only 1 operand, so unary operator

+, -, <, >, and, or, etc. - need 2 operands, so binary operators

 Conditional Expressions

 	Python supports one additional decision-making entity called a conditional expression.
<expr1> if <conditional expression> else <expr2>

<conditional expression> is evaluated first. If it is true, the expression evaluates to <expr1>. If it is false, the expression evaluates to <expr2>.

 	Examples of condition expressions:
age = 15

status = ‘minor’ if age < 18 else ‘adult’ # sets minor

sunny = False

print(‘Let’s go to the’, ‘beach’ if sunny else ‘room’)

humidity = 76.8

setting = 25 if humidity > 75 else 28 # sets 25

 	Conditional expressions can be nested.
assigns Prim

wt = 55

msg = ‘Obese’ if wt > 85 else ‘Hefty’ if wt > 60 else ‘Prim’

 Programs

 Problem 4.1

 While purchasing certain items, a discount of 10% is offered if the quantity purchased is more than 1000. If quantity and price per item are input through the keyboard, write a program to calculate the total expenses.

 Program

 qty = int(input(‘Enter value of quantity:’))

 price = float(input(‘Enter value of price:’))

 if qty > 1000:

 dis = 10

 else:

 dis = 0

 totexp = qty * price - qty * price * dis / 100

 print(‘Total expenses = Rs.’ + str(totexp))

 Output

 Enter value of quantity: 1200

 Enter value of price: 15.50

 Total expenses = Rs. 16740.0

 Tips

 	input() returns a string, so it is necessary to convert it into int or float suitably.

 	If we do not do the conversion, qty > 1000 will throw an error as a string cannot be compared with an int.

 	str() should be used to convert totexp to string before doing concatenation using +.

 Problem 4.2

 In a company an employee is paid as under:

 If his basic salary is less than Rs. 1500, then HRA = 10% of basic salary and DA = 90% of basic salary. If his salary is either equal to or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic salary. If the employee’s salary is input through the keyboard write a program to find his gross salary.

 Program

 bs = int(input(‘Enter value of bs:’))

 if bs > 1000:

 hra = bs * 15 /100

 da = bs * 95 / 100

 ca = bs * 10 / 100

 else:

 hra = bs * 10 / 100

 da = bs * 90 / 100

 ca = bs * 5 / 100

 gs = bs + da + hra + ca

 print(‘Gross Salary = Rs.’ + str(gs))

 Tips

 	if block and else block can contain multiple statements in them, suitably indented.

 Problem 4.3

 Percentage marks obtained by a student are input through the keyboard. The student gets a division as per the following rules:

 Percentage above or equal to 60 - First division

 Percentage between 50 and 59 - Second division

 Percentage between 40 and 49 - Third division

 Percentage less than 40 - Fail

 Write a program to calculate the division obtained by the student.

 Program

 per = int(input(‘Enter value of percentage:’))

 if per >= 60:

 print(‘First Division’)

 elif per >= 50:

 print(‘Second Division’)

 elif per >= 40:

 print(‘Third Division’)

 else:

 print(‘Fail’)

 Output

 Enter value of percentage: 55

 Second Division

 Problem 4.4

 A company insures its drivers in the following cases:

 - If the driver is married.

 - If the driver is unmarried, male & above 30 years of age.

 - If the driver is unmarried, female & above 25 years of age.

 In all other cases, the driver is not insured. If the marital status, sex and age of the driver are the inputs, write a program to determine whether the driver should be insured or not.

 Program

 ms = input(‘Enter marital status:’)

 s = input(‘Enter sex:’)

 age = int(input(‘Enter age:’))

 if (ms == ‘m’) or (ms == ‘u’ and s == ‘m’ and age > 30) \ or (ms == ‘u’ and s == ‘f’ and age > 25):

 print(‘Insured’)

 else:

 print(‘Not Insured’)

 Output

 Enter marital status: u

 Enter sex: m

 Enter age: 23

 Not Insured

 Problem 4.5

 Suppose there are four flag variables w, x, y, z. Write a program to check in multiple ways whether one of them is true.

 Program

 # Different ways to test multiple flags

 w, x, y, z = 0, 1, 0, 1

 if w == 1 or x == 1 or y == 1 or z == 1:

 print(‘True’)

 if w or x or y or z:

 print(‘True’)

 if any((w, x, y, z)):

 print(‘True’)

 if 1 in (w, x, y, z):

 print(‘True’)

 Output

 True True

 True True

 Tips

 	any() is a built-in function that returns True if at least one of its parameters is True.

 	Instead of variables, we can pass a string, list, tuple, set or dictionary to any().

 	There is another similar function called all(), which returns True if all parameters are True. This function too can be used with string, list, tuple, set and dictionary.

 Problem 4.6

 Given a number n we wish to do the following:

 If n is positive - print n * n, set a flag to true

 If n is negative - print n * n * n, set a flag to true

 if n is 0 - do nothing

 Is the code given below correct for this logic?

 n = int(input(‘Enter a number:’))

 if n > 0:

 flag = True

 print(n * n)

 elif n < 0:

 flag = True

 print(n * n * n)

 Tips

 	This is misleading code. At a later date, anybody looking at this code may feel that flag = True should be written outside if.

 	Better code will be as follows:
n = int(input(‘Enter a number:’))

if n > 0:

flag = True

print(n * n)

elif n < 0:

flag = True

print(n * n * n)

else:

pass

 Exercise

 [A] Answer the following:

 	Write conditional expressions for
- If a < 10 b =20, else b = 30

- Print ‘Morning’ if time < 12, otherwise print ‘Afternoon’

- If marks >= 70, set remarks to True, otherwise False

 	Rewrite the following code snippet in 1 line:
x = 3

y = 3.0

if x == y:

print(‘x and y are equal’)

else:

print(‘x and y are not equal’)

 [B] What will be the output of the following programs:

 	i, j, k = 4, -1, 0
w = i or j or k

x = i and j and k

y = i or j and k

z = i and j or k

print(w, x, y, z)

 	a = 10
a = not not a

print(a)

 	x, y, z = 20, 40, 45
if x > y and x > z:

print(‘biggest = ’ + str(x))

elif (y > x and y > z)

print(‘biggest = ’ + str(y))

elif (z > x and z > y)

print(‘biggest = ’ + str(z))

 	num = 30
k = 100 if num <= 10 else 500

print(k)

a = 10

b = 60

if a and b > 20:

print(‘Hello’)

else

print(‘Hi’)

a = 10

b = 60

if a > 20 and b > 20:

print(‘Hello’)

else

print(‘Hi’)

a = 10

if a = 30 or 40 or 60:

print(‘Hello’)

else

print(‘Hi’)

a = 10

if a = 30 or a == 40 or a == 60:

print(‘Hello’)

else

print(‘Hi’)

a = 10

if a in (30, 40, 50):

print(‘Hello’)

else

print(‘Hi’)

 [C] Point out the errors, if any, in the following programs:

 	a = 12.25
b = 12.52

if a = b:

print(‘a and b are equal’)

 	if ord(‘X’) < ord(‘x’)
print(‘Unicode value of X is smaller than that of x’)

 	x = 10
if x >= 2 then

print(‘x’)

 	x = 10; y = 15
if x % 2 = y % 3

print(‘Carpathians\n’)

 	x, y = 30, 40
if x == y:

print(‘x is equal to y’)

elseif x > y:

print(‘x is greater than y’)

elseif x < y:

print(‘x is less than y’)

 [D] If a = 10, b = 12, c = 0, find the values of the following expressions:

 	a != 6 and b > 5

 	a == 9 or b < 3

 	not (a < 10)

 	not (a > 5 and c)

 	5 and c != 8 or !c

 [E] Attempt the following:

 	Any integer is input through the keyboard. Write a program to find out whether it is an odd number or even number.

 	Any year is input through the keyboard. Write a program to determine whether the year is a leap year or not.

 	If ages of Ram, Shyam and Ajay are input through the keyboard, write a program to determine the youngest of the three.

 	Write a program to check whether a triangle is valid or not, when the three angles of the triangle are entered through the keyboard. A triangle is valid if the sum of all the three angles is equal to 180 degrees.

 	Write a program to find the absolute value of a number entered through the keyboard.

 	Given the length and breadth of a rectangle, write a program to find whether the area of the rectangle is greater than its perimeter. For example, the area of the rectangle with length = 5 and breadth = 4 is greater than its perimeter.

 	Given three points (x1, y1), (x2, y2) and (x3, y3), write a program to check if all the three points fall on one straight line.

 	Given the coordinates (x, y) of center of a circle and its radius, write a program that will determine whether a point lies inside the circle, on the circle or outside the circle. (Hint: Use sqrt() and pow() functions)

 	Given a point (x, y), write a program to find out if it lies on the X-axis, Y-axis or on the origin.

 	A year is entered through the keyboard, write a program to determine whether the year is leap or not. Use the logical operators and and or.

 	If the three sides of a triangle are entered through the keyboard, write a program to check whether the triangle is valid or not. The triangle is valid if the sum of two sides is greater than the largest of the three sides.

 	If the three sides of a triangle are entered through the keyboard, write a program to check whether the triangle is isosceles, equilateral, scalene or right angled triangle.

 5

 Repetition Control Instruction

 	Repetition Control Instruction

 	Usage of while and for

 	break and continue

 	pass Statement

 	Programs

 	Exercise

 KanNotes

 Repetition Control Instruction

 	There are two types of repetition control instructions:

	while

	for

Unlike many other languages there is no do-while loop in Python.

 	while is used to repeatedly execute instructions as long as condition is true. It has two forms:

[image:]

- else block is optional. If present, it is executed when condition fails.

- If the while loop is terminated abruptly using a break statement then the else block is not executed.

 	for is used to iterate over elements of a sequence such as string, tuple or list. It has two forms:

[image:]

- During each iteration var is assigned the next value from the list.

- else block is optional. If present, it is executed if loop is not terminated abruptly using break.

 Usage of while and for

 	List is a sequence type. It usually contains similar items. It can be iterated through using a for loop.
for animal in [‘Cat’, ‘Dog’, ‘Tiger’, ‘Lion’, ‘Leopard’]:

print(animal + ‘’ + str(len(animal))) # prints animal and length

During each iteration animal is assigned the next value form the list.

 	In the following example else block will not go to work as the list contains 3, a non-multiple of 10, on encountering which we terminate the loop.
for ele in [10, 20, 30, 3, 40, 50]:

if ele % 10 != 0:

print(ele, ‘is a not a multiple of 10’)

break

else:

print(‘all numbers in list are multiples of 10’)

 	A while loop can be used to iterate through a string or a list using an index value:
lst = [‘desert’, ‘dessert’, ‘to’, ‘too’, ‘lose’, ‘loose’]

s = ‘Mumbai’

i = 0

while i < len(lst):

print(i, lst[i], s[i])

i += 1

If we wish to do the same using a for loop, then we should use the built-in enumerate() function.

lst = [‘desert’, ‘dessert’, ‘to’, ‘too’, ‘lose’, ‘loose’]

for i, ele in enumerate(lst):

print(i, ele)

 	range() function can be used to generate a sequence of integers.
range(10) - generates numbers from 0 to 9

range(10, 20) - generates numbers from 10 to 19

range(10, 20, 2) - generates numbers from 10 to 19 in steps of 2

range(20, 10, -3) - generates numbers from 20 to 9 in steps of -3

 	In general,
range(start, stop, step)

produces a sequence of integers from start (inclusive) to stop (exclusive) by step.

 	The list of numbers generated using range() can be iterated through using a for loop.
for i in range(1, 10, 2):

print(i, i * i, i * i * i)

 break and continue

 	break and continue statements can be used with while and for.

 	break statement terminates the loop without executing the else block.

 	continue statement skips the rest of the statements in the block and continues with the next iteration of the loop.

 pass Statement

 	pass statement is intended to do nothing on execution. Hence it is often called a no-op instruction.

 	It is often used as a placeholder for unimplemented code in an if, loop, function or class. This is not a good use of pass. Instead you should use … in its place. If you use pass it might make one believe that you actually do not intend to do anything in the if/loop/function/class.

 Programs

 Problem 5.1

 Write a program that receives 3 sets of values of p, n and r and calculates simple interest for each.

 Program

 i = 1

 while i <= 3:

 p = float(input(‘Enter value of p:’))

 n = int(input(‘Enter value of n:’))

 r = float(input(‘Enter value of r:’))

 si = p * n * r / 100

 print(‘Simple interest = Rs. ’ + str (si))

 i = i + 1

 Output

 Enter value of p: 1000

 Enter value of n: 3

 Enter value of r: 15.5

 Simple interest = Rs. 465.0

 Enter value of p: 2000

 Enter value of n: 5

 Enter value of r: 16.5

 Simple interest = Rs. 1650.0

 Enter value of p: 3000

 Enter value of n: 2

 Enter value of r: 10.45

 Simple interest = Rs. 626.9999999999999

 Problem 5.2

 Write a program that prints numbers from 1 to 10 using an infinite loop. All numbers should get printed in the same line.

 Program

 i = 1

 while 1:

 print(i, end=‘’)

 i += 1

 if i > 10:

 break

 Output

 1 2 3 4 5 6 7 8 9 10

 Tips

 	while 1 creates an infinite loop, as 1 is non-zero, hence true.

 	Replacing 1 in while 1 with any non-zero number in place of 1 will create an infinite loop.

 	Another way of creating an infinite loop is while True.

 	end=‘’ in print() prints a space after printingi in each iteration. Default value of end is newline.

 Problem 5.3

 Write a program that prints all unique combinations of 1, 2 and 3.

 Program

 [image:]

 Output

 1 2 3

 1 3 2

 2 1 3

 2 3 1

 3 1 2

 3 2 1

 Problem 5.4

 Write a program that obtains decimal value of a binary numeric string. Fr example, decimal value of ‘1111’ is 15.

 Program

 b = ‘1111’

 i = 0

 while b:

 i = i * 2 + (ord(b[0]) - ord(‘0’))

 b = b[1:]

 print(‘Decimal value = ‘ + str(i))

 Output

 Decimal value = 15

 Tips

 	ord(1) is 49, whereas ord(‘0’) is 0.

 	b = b[1:] strips the first character in b.

 Problem 5.5

 Write a program that receives an integer and determines whether it is a prime number or not.

 Program

 num = int(input(‘Enter value of num:’))

 i = 2

 while i <= num - 1:

 if num % i == 0:

 print(‘Not a prime number’)

 break

 i += 1

 else:

 print(‘Prime number’)

 Output

 Enter value of num: 15

 Not a prime number

 Tips

 	Note the indentation of else. else is working for the while and not for if.

 Problem 5.6

 Write a program that generates the following output using a for loop:

 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,

 z,y,x,w,v,u,t,s,r,q,p,o,n,m,l,k,j,i,h,g,f,e,d,c,b,a,

 Program

 for alpha in range(65, 91):

 print(chr(alpha), end=’,’)

 print()

 for alpha in range(122, 96, -1):

 print(chr(alpha), end=‘,’)

 Tips

 	Unicode values of alphabets A-Z are 65-90. Unicode values of alphabets a-z are 97-122.

 	Each output of print statement ends with a comma.

 	Empty print() statement positions the cursor at the beginning of the next line.

 Exercise

 [A] Answer the following:

 	When does the else block of a while loop go to work?

 	What happens when a pass statement is executed?

 	Can range() function be used to generate numbers from 0.1 to 1.0 in steps of 0.1?

 	Can a while loop be nested within a for loop and vice versa?

 	Can a while/for loop be used in an if/else and vice versa?

 [B] Match the following for the values each range() function will generated when used in a for loop.

 	
 a. range(5)

 	
 1. 1, 2, 3, 4

 	
 b. range(1, 10, 3)

 	
 2. 0, 1, 2, 3, 4

 	
 c. range(10, 1, -2)

 	
 3. Nothing

 	
 d. range(1, 5)

 	
 4. 10, 8, 6, 4, 2

 	
 e. range(-2)

 	
 5. 1, 4, 7

 [C] Attempt the following:

 	Write a program to print first 25 odd numbers using range().

 	Rewrite the following program using for loop.
lst = [‘desert’, ‘dessert’, ‘to’, ‘too’, ‘lose’, ‘loose’]

s = ‘Mumbai’

i = 0

while i < len(lst):

if i > 3:

break

else:

print(i, lst[i], s[i])

i += 1

 	Write a program to count the number of alphabets and number of digits in the string ‘Nagpur-440010’

 	A five-digit number is entered through the keyboard. Write a program to obtain the reversed number and to determine whether the original and reversed numbers are equal or not.

 	Write a program to find the factorial value of any number entered through the keyboard.

 	Write a program to print out all Armstrong numbers between 1 and 500. If sum of cubes of each digit of the number is equal to the number itself, then the number is called an Armstrong number. For example, 153 = (1 * 1 * 1) + (5 * 5 * 5) + (3 * 3 * 3).

 	Write a program to print all prime numbers from 1 to 300.

 	Write a program to print the multiplication table of the number entered by the user. The table should get displayed in the following form:
29 * 1 = 29

29 * 2 = 58

…

 	When interest compounds q times per year at an annual rate of r % for n years, the principal p compounds to an amount a as per the following formula
a = p (1 + r / q)nq

Write a program to read 10 sets of p, r, n & q and calculate the corresponding as.

 	Write a program to generate all Pythagorean Triplets with side length less than or equal to 30.

 	Population of a town today is 100000. The population has increased steadily at the rate of 10 % per year for last 10 years. Write a program to determine the population at the end of each year in the last decade.

 	Ramanujan number is the smallest number that can be expressed as sum of two cubes in two different ways. Write a program to print all such numbers up to a reasonable limit.

 	Write a program to print 24 hours of day with suitable suffixes like AM, PM, Noon and Midnight.

 6

 Console Input/Output

 	Console Input

 	Console Output

 	Formatted Printing

 	Programs

 	Exercise

 KanNotes

 	Console Input/Output means input from keyboard and output to screen.

 Console Input

 	Console input can be received using the input() function.

 	General form of input() function is
s = input(‘prompt’)

prompt is a string that is displayed on the screen, soliciting a value. input() returns a string.

 	If 123 is entered as input, ‘123’ is returned.

 	input() can be used to receive, 1, or more values.
receive full name

name = input(‘Enter full name’);

separate first name, middle name and surname

fname, mname, sname = input(‘Enter full name:’).split()

 	split() function returns a list which can be iterated over using a for loop. We can use this feature to receive multiple values.
n1, n2, n3 = [int(n) for n in input(‘Enter three values:’).split()] print(n1+10, n2+20, n3+30)

 	input() can be used to receive arbitrary number of values.
numbers = [int(x) for x in input(‘Enter values:’).split()]

for n in numbers:

print(n + 10)

 	input() can be used to receive different types at a time.
data = input(‘Enter name, age, salary:’).split(‘,’)

name = data[0]

age = int(data[1])

salary = float(data[2])

 Console Output

 	print() function is used to send output to screen.

 	print() function has this form
print(objects, sep = ‘’, end = ‘\n’, file = sys.stdout, flush = false)

This means that by default objects will be printed to screen (sys.stdout), separated by space (sep = ‘’) and last printed object will be followed by a newline (end = ‘\n’). flush = false indicates that output stream will not be flushed.

 	Python has a facility to call functions and pass keyword-based values as arguments. So while calling print() we can pass specific values for sep and end. In this case, default values will not be used; instead the values that we pass will be used.
print(a, b, c, sep = ‘,’, end = ‘!’) # prints ‘,’ after each value, ! at end

print(x, y, sep = ‘…’, end = ‘#’) # prints ‘…’ after each value, # at end

 Formatted Printing

 	There are 4 ways to control the formatting of output:

	Using formatted string literals - easiest

	Using the format() method - older

	C printf() style - legacy

	Using slicing and concatenation operation - difficult

Today (a) is most dominantly used method followed by (b).

 	Using formatted string literals (often called fstrings):
r, l, b = 1.5678, 10.5, 12.66

print(f’radius = {r}’)

print(f’length = {l} breadth = {b} radius = {r}’)

name = ‘Sushant Ajay Raje’

for n in name.split():

print(f’{n:10}’) # print in 10 columns

 	Using format() method of string object:
r, l, b = 1.5678, 10.5, 12.66

name, age, salary = ‘Rakshita’, 30, 53000.55

print in order by position of variables using empty {}

print(‘radius = {} length = {} breadth ={}’.format(r, l, b))

print(‘name = {} age = {} salary = {}’.format(name, age, salary))

print in any desired order

print(‘radius = {2} length = {1} breadth ={0}’.format(r, l, b))

print(‘age={1} salary={2} name={0}’.format(name, age, salary))

print name in 15 columns, salary in 10 columns

print(‘name = {0:15} salary = {1:10}’.format(name, salary))

print radius in 10 columns, with digits after decimal point

print(‘radius = {0:10.2f}’.format(r))

On execution, the above code snippet will produce the following output:

radius = 1.5678 length = 10.5 breadth =12.66

name = Rakshita age = 30 salary = 53000.55

radius = 12.66 length = 10.5 breadth =1.5678

age=30 salary=53000.55 name=Rakshita

name = Rakshita salary = 53000.55

radius = 1.57

 Programs

 Problem 6.1

 Write a program to receive radius of a circle, and length and breadth of a rectangle in one call to input(). Calculate and print the circumference of circle and perimeter of rectangle.

 Program

 r, l, b = input(‘Enter radius, length and breadth:’).split()

 radius = int(r)

 length = int(l) breadth = int(b)

 circumference = 2 * 3.14 * radius

 perimeter = 2 * (length + breadth)

 print(circumference)

 print(perimeter)

 Output

 Enter radius, length and breadth: 3 4 5

 18.84

 18

 Tips

 	input() returns a string, so it is necessary to convert it into int or float suitably, before performing arithmetic operations.

 Problem 6.2

 Write a program to receive 3 integers using one call to input(). The three integers signify starting value, ending value and step value for a range. The program should use these values to print the number, its square and its cube, all properly right-aligned. Try doing this in multiple ways.

 Program

 start, end, step = input(‘Enter start, end, step values:’).split()

 # one way

 for n in range(int(start), int(end), int(step)):

 print(f’{n:>5}{n**2:>7}{n**3:>8}’)

 print()

 # another way

 for n in range(int(start), int(end), int(step)):

 print(‘{0:<5}{1:<7}{2:<8}’.format(n, n ** 2, n ** 3))

 Output

 Enter start, end, step values: 1 10 2

 [image:]

 Tips

 	{n:>5} will print n right-justified within 5 columns. Use < to left-justify.

 	{0:<5} will left-justify 0th parameter in the list within 5 columns. Use > to right-justify.

 Problem 6.3

 Write a program to maintain names and cell numbers of 4 persons and then print them systematically in a tabular form.

 Program

 [image:]

 Output

 	
 Dilip

 	
 :9823077892

 	
 Shekhar

 	
 :6784512345

 	
 Vivek

 	
 :9823011245

 	
 Riddhi

 	
 :9766556779

 Problem 6.4

 Suppose there are 5 variables in a program—max, min, mean, sd and var, having some suitable values. Write a program to print these variables properly aligned using multiple fstrings, but one call to print().

 Program

 min, max = 25, 75

 mean = 35

 sd = 0.56

 var = 0.9

 print(

 f’\n{“Max Value:”:<15}{max:>10}’,

 f’\n{“Min Value:”:<15}{min:>10}’,

 f’\n{“Mean:”:<15}{mean:>10}’,

 f‘\n{“Std Dev:”:<15}{sd:>10}’,

 f‘\n{“Variance:”:<15}{var:>10}’)

 Output

 	
 Max Value:

 	
 75

 	
 Min Value:

 	
 25

 	
 Mean:

 	
 35

 	
 Std Deviation:

 	
 0.56

 	
 Variance:

 	
 0.9

 Problem 6.5

 Write a program that prints square root and cube root of numbers from 1 to 10, up to 3 decimal places. Ensure that the output is displayed in separate lines, with number center-justified and square and cube roots, right-justified.

 Program

 import math

 width = 10

 precision = 4

 for n in range(1, 10):

 s = math.sqrt(n)

 c = math.pow(n,1/3)

 print(f‘{n:^5}{s:{width}.{precision}}{c:{width}.{precision}}’)

 Output

 [image:]

 Exercise

 [A] Attempt the following:

 	How will you make the following code more compact?
print(‘Enter ages of 3 persons’)

age1 = input()

age2 = input()

age3 = input()

 	Write a program to receive an arbitrary number of floats using one input() statement. Calculate the average of floats received.

 	Write a program to receive the following using one input() statement.
Name of the person

Years of service

Diwali bonus received

Calculate and print the agreement deduction as per the following formula:

deduction = 2 * years of service + bonus * 5.5 / 100

 	Write a program to print the following values
a = 12.34, b = 234.39, c = 444.34, d = 1.23, e = 34.67

as shown below:

	a =

	12.34

	b =

	234.39

	c =

	444.34

	d =

	1.23

	e =

	34.67

 [B] Match the following:

 	
 a. Default value of sep in print()

 	
 1. ‘’

 	
 b. Default value of end in print()

 	
 2. Using fstring

 	
 c. Easiest way to print output

 	
 3. Right justify num in 5 columns

 	
 d. Return type of split()

 	
 4. Left justify num in 5 columns

 	
 e. print(‘{num:>5}’)

 	
 5. str

 	
 f. print(‘{num:<5}’)

 	
 6. \n

 7

 Lists

 	What are Lists?

 	Accessing List Elements

 	Basic List Operations

 	List Methods

 	List Varieties

 	Programs

 	Exercise

 KanNotes

 What are Lists?

 	Container is an entity which contains multiple data items. It is also known as a collection.

 	Python has following container data types:
Lists

Tuples

Sets

Dictionaries

 	Container data types are also known as compound data types.

 	A list is also known as a dynamic array. It is an ordered collection which can be indexed and sliced.

 	Lists are commonly used for handling variable length data.

 	Though lists can contain dissimilar types, usually they are a collection of similar types. For example:
animals = [‘Zebra’, ‘Antelope’, ‘Tiger’, ‘Chimpanzee’, ‘Lion’]

ages = [23, 24, 25, 23, 24, 25, 26, 27, 30]

num = [10] * 5 # stores [10, 10, 10, 10, 10]

lst = [] # empty list, valid

 	Items in a list can be repeated, i.e. a list may contain duplicate items.

 Accessing List Elements

 	Like strings, list items can be accessed using indices. Hence they are also known as sequence types. The index value starts from 0.
print(animals[1], ages[3])

 	Like strings, lists can be sliced
print(animals[1:3])

print(ages[3:])

 	Entire list can be printed by just using the name of the list.
l = [‘Able’, ‘was’, ‘I’, ‘ere’, ‘I’, ‘saw’, ‘elbA’]

print(l)

 	A list of all keywords in Python is also returned as a list.
import keyword

print(keyword.kwlist)

 Basic List Operations

 	Unlike strings, lists are mutable (changeable).

	animals[2] =‘Rhinoceros’

	ages[5] = 31

	ages[2:5] = [24, 25, 32]

	# sets items 2 to 5 with values 24, 25, 32

	ages[2:5] = []

	# delete items 2 to 4

 	Following basic operations can be performed on a list:

	lst = [12, 15, 13, 23, 22, 16, 17]

	# create list

	lst = lst + [33, 44, 55]

	# concatenation

merge to create a new list

s = [10, 20, 30]

t = [100, 200, 300]

z = s + t # creates [10, 20, 30, 100, 200, 300]

searching (membership) and sorting

‘a’ in [‘a’, ‘e’, ‘i’, ‘o’, ‘u’] # return True since ‘a’ is present in the list

‘z’ not in [‘a’, ‘e’, ‘i’, ‘o’, ‘u’] # return True since ‘z’ is absent in list

sorted(lst) # return sorted list, lst remains unchanged

	# deletion

	del(lst[3])

	# delete 3rd item in the list

	del(lst[2:5])

	# delete items 2 to 4 from the list

	del(a[:])

	# delete entire list

conversion

	list(‘Africa’)

	# converts the string to a list [‘A’, ‘f’, ‘r’, ‘i’, ‘c’, ‘a’]

	len(lst)

	# return number of items in the list

	max(lst)

	# return maximum element in the list

	min(lst)

	# return minimum element in the list

	sum(lst)

	# return sum of all elements in the list

 	We can check if a list is empty using not operator
lst = []

if not lst:

print(‘Empty list’)

Following values are considered to be False:

None

Number equivalent to zero: 0, 0.0, 0j

Empty sequences: ‘’, “”, [], ()

Empty sets and dictionaries: {}

	print(bool(None))

	# prints False

	print(bool(25))

	# prints True

	print(bool([]))

	# prints False

 	Shallow copy - on assigning one list to another, both refer to the same list. Changing one changes the other.

	lst1 = [10, 20, 30, 40, 50]

	lst2 = lst1

	# doesn’t copy list. lst2 refers to same list as lst1

	print(lst1)

	# prints [10, 20, 30, 40, 50]

	print(lst2)

	# prints [10, 20, 30, 40, 50]

	lst1[0] = 100

	print(lst1[0], lst2[0])

	# prints 100 100

 	Deep copy - Copies contents of one list into another. Both refer to different lists, though both contain same values. Changing one, doesn’t change another.

	lst1 = [10, 20, 30, 40, 50]

	lst2 = []

	# empty list

	lst2 = lst2 + lst1

	# lst1, lst2 refer to different lists

	print(lst1)

	# prints [10, 20, 30, 40, 50]

	print(lst2)

	# prints [10, 20, 30, 40, 50]

	lst1[0] = 100

	print(lst1[0], lst2[0])

	# prints 100, 10

 	Difference in deletion

	lst1 = [10, 20, 30, 40, 50]

	lst3 = lst2 = lst1

	# all refer to same list

	lst1 = []

	# lst1 refers to empty list; lst2, lst3 to original list

	print(lst2)

	# prints [10, 20, 30, 40, 50]

	print(lst3)

	# prints [10, 20, 30, 40, 50]

	lst2[:] = []

	# list is emptied by deleting all items

	print(lst2)

	# prints []

	print(lst3)

	# prints []

 	We can find out whether two list variables are referring to the same list.

	lst1 = [10, 20, 30, 40, 50]

	lst3 = lst2 = lst1

	# all refer to same list

	lst4 = [‘A’, ‘B’, ‘C’]

	# different list

	print(lst1 is lst2)

	# prints True

	print(lst1 is lst3)

	# prints True

	print(lst1 is not lst4)

	# prints True

 	It is possible to compare contents of two lists. Comparison is done item by item till there is a mismatch. In following code it would be decided that a is less than b when 3 and 5 are compared.
a = [1, 2, 3, 4]

b = [1, 2, 5]

if a < b:

print(‘a is less than b’)

elif a == b:

print(‘a is equal to b’)

else:

print(‘b is less than a’)

 List Methods

 	List methods are accessed using the syntax list.function(). Some of the commonly needed methods are shown below:

	lst = [12, 15, 13, 23, 22, 16, 17]

	# create list

	lst.append(22)

	# add new item at end

	lst.remove(13)

	# delete item 13 from list

	lat.remove(30)

	# reports valueError as 30 is absent in lst

	lst.pop()

	# removes last item in list

	lst.pop(3)

	# removes 3rd item in the list

	lst.insert(3,21)

	# insert 21 at 3rd position

	lst.reverse()

	# reverse the items in the list

	lst.sort()

	# sort items in the list

	lst.sort(reverse = True)

	# sort items in reverse order

	lst.count(23)

	# return number of times 23 appears in lst

	idx = lst.index(22)

	# return index of item 22

	idx = lst.index(50)

	# reports valueError as 50 is absent in lst

 List Varieties

 	It is possible to create a list of lists.
a = [1, 3, 5, 7, 9]

b = [2, 4, 6, 8, 10]

c = [a, b]

print(c[0][0], c[1][2]) # 0th element of 0th list, 2nd ele. of 1st list

 	A list may be embedded in another list.
x = [1, 2, 3, 4]

y = [10, 20, x, 30]

print(y) # outputs [10, 20, [1, 2, 3, 4], 30]

 	It is possible to unpack a string or list within a list using the *operator.
s = ‘Hello’

l = [*s]

print(l) # outputs [‘H’, ‘e’, ‘l’, ‘l’, ‘o’]

x = [1, 2, 3, 4]

y = [10, 20, *x, 30]

print(y) # outputs [10, 20, 1, 2, 3, 4, 30]

 Programs

 Problem 7.1

 Perform the following operations on a list of names.

 - Create a list of 5 names - ‘Anil’, ‘Amol’, ‘Aditya’, ‘Avi’, ‘Alka’

 - Insert a name ‘Anuj’ before ‘Aditya’

 - Append a name ‘Zulu’

 - Delete ‘Avi’ from the list

 - Replace ‘Anil’ with ‘AnilKumar’

 - Sort all the names in the list

 - Print reversed sorted list

 Program

 # Create a list of 5 names

 names = [‘Anil’, ‘Amol’, ‘Aditya’, ‘Avi’, ‘Alka’]

 print(names)

 # insert a name ‘Anuj’ before ‘Aditya’

 names.insert(2,‘Anuj’)

 print(names)

 # append a name ‘Zulu’

 names.append(‘Zulu’)

 print(names)

 # delete ‘Avi’ from the list

 names.remove(‘Avi’)

 print(names)

 # replace ‘Anil’ with ‘AnilKumar’

 i=names.index(‘Anil’)

 names[i] = ‘AnilKumar’

 print(names)

 # sort all the names in the list

 names.sort()

 print(names)

 # print reversed sorted list

 names.reverse()

 print(names)

 Output

 [‘Anil’, ‘Amol’, ‘Aditya’, ‘Avi’, ‘Alka’]

 [‘Anil’, ‘Amol’, ‘Anuj’, ‘Aditya’, ‘Avi’, ‘Alka’]

 [‘Anil’, ‘Amol’, ‘Anuj’, ‘Aditya’, ‘Avi’, ‘Alka’, ‘Zulu’]

 [‘Anil’, ‘Amol’, ‘Anuj’, ‘Aditya’, ‘Alka’, ‘Zulu’]

 [‘AnilKumar’, ‘Amol’, ‘Anuj’, ‘Aditya’, ‘Alka’, ‘Zulu’]

 [‘Aditya’, ‘Alka’, ‘Amol’, ‘AnilKumar’, ‘Anuj’, ‘Zulu’]

 [‘Zulu’, ‘Anuj’, ‘AnilKumar’, ‘Amol’, ‘Alka’, ‘Aditya’]

 Problem 7.2

 Perform the following operations on a list of names.

 - Create a list of 5 odd numbers

 - Create a list of 5 even numbers

 - Combine the two lists

 - Add prime numbers 11, 17, 29 at the beginning of the combined list

 - Report how many elements are present in the list

 - Replace last 3 numbers in the list with 100, 200, 300

 - Delete all the numbers in the list

 - Delete the list

 Program

 # create a list of 5 odd numbers

 a = [1, 3, 5, 7, 9]

 print(a)

 # create a list of 5 even numbers

 b = [2, 4, 6, 8, 10]

 print(b)

 # combine the two lists

 a = a + b

 print(a)

 # add prime numbers 11, 17, 29 at the beginning of the combined list

 a = [11, 17, 29] + a

 print(a)

 # report how many elements are present in the list

 num = len(a)

 print(num)

 # replace last 3 numbers in the list with 100, 200, 300

 a[num-3:num] = [100, 200, 300]

 print(a)

 # delete all the numbers in the list

 a[:] = []

 print(a)

 # delete the list

 del a

 Output

 [1, 3, 5, 7, 9]

 [2, 4, 6, 8, 10]

 [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]

 [11, 17, 29, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10]

 13

 [11, 17, 29, 1, 3, 5, 7, 9, 2, 4, 100, 200, 300]

 []

 Problem 7.3

 Write a program to implement a Stack data structure. Stack is a Last In First Out (LIFO) list in which addition and deletion takes place at the same end.

 Program

 # stack - LIFO list

 s = [] # empty stack

 # push elements on stack

 s.append(10)

 s.append(20)

 s.append(30)

 s.append(40)

 s.append(50)

 print(s)

 # pop elements from stack

 print(s.pop())

 print(s.pop())

 print(s.pop())

 print(s)

 Output

 [10, 20, 30, 40, 50]

 50

 40

 30

 [10, 20]

 Problem 7.4

 Write a program to implement a Queue data structure. Queue is a First In First Out (LIFO) list, in which addition takes place at the rear end of the queue and deletion takes place at the front end of the queue.

 Program

 import collections

 q = collections.deque()

 q.append(‘Suhana’)

 q.append(‘Shabana’)

 q.append(‘Shakila’)

 q.append(‘Shakira’)

 q.append(‘Sameera’)

 print(q)

 print(q.popleft())

 print(q.popleft())

 print(q.popleft())

 print(q)

 Output

 deque([‘Suhana’, ‘Shabana’, ‘Shakila’, ‘Shakira’, ‘Sameera’])

 Suhana

 Shabana

 Shakila

 deque([‘Shakira’, ‘Sameera’])

 Tips

 	Lists are not efficient for implementation of queue data structure.

 	With lists removal of items from beginning is not efficient, since it involves shifting of rest of the elements by 1 position after deletion.

 	Hence for fast additions and deletions, collections.dequeue class is preferred.

 	Deque stands for double ended queue. Addition and deletion in a deque can take place at both ends.

 Problem 7.5

 Write a program to generate and store in a list 20 random numbers in the range 10 to 100. From this list delete all those entries which have value between 20 and 50. Print the remaining list.

 Program

 import random

 a = []

 i = 1

 while i <= 15:

 num = random.randint(10,100)

 a.append(num)

 i += 1

 print(a)

 for num in a:

 if num > 20 and num < 50:

 a.remove(num)

 print(a)

 Output

 [64, 10, 13, 25, 16, 39, 80, 100, 45, 33, 30, 22, 59, 73, 83]

 [64, 10, 13, 16, 80, 100, 33, 22, 59, 73, 83]

 Problem 7.6

 Write a program to add two 3 x 4 matrices.

 Program

 mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat2 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat3 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

 # iterate through rows

 for i in range(len(mat1)):

 # iterate through columns

 for j in range(len(mat1[0])):

 mat3[i][j] = mat1[i][j] + mat2[i][j]

 print(mat3)

 Output

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 Exercise

 [A] Answer the following:

 	Write a program to create a list of 5 odd integers. Replace the third element with a list of 4 even integers. Flatten, sort and print the list.

 	Suppose a list contains 20 integers generated randomly. Receive a number from the keyboard and report position of all occurrences of this number in the list.

 	Suppose a list has 20 numbers. Write a program that removes all duplicates from this list.

 	Suppose a list contains positive and negative numbers. Write a program to create two lists—one containing positive numbers and another containing negative numbers.

 	Suppose a list contains 5 strings. Write a program to convert all these strings to uppercase.

 	Write a program that converts list of temperatures in Fahrenheit degrees to equivalent Celsius degrees.

 	Write a program to obtain a median value of a list of numbers, without disturbing the order of the numbers in the list.

 	A list contains only positive and negative integers. Write a program to obtain the number of negative numbers present in the list, without using a loop.

 8

 Tuples

 	What are Tuples?

 	More Ways to Create Tuples

 	Accessing Tuple Elements

 	Tuple Operations

 	Tuple Varieties

 	Programs

 	Exercise

 KanNotes

 What are Tuples?

 	Tuples are typically used for handling heterogeneous data. The heterogeneous data is enclosed within ().

	a = ()

	# empty tuple

	b = (10,)

	# tuple with one item., after 10 is necessary

	c = (‘Sanjay’, 25, 34555.50)

	# tuple with multiple items

While creating the tuple b, if we do not use the comma after 10, b is treated to be of type int.

 	While initializing a tuple, we may drop ().

	c = ‘Sanjay’, 25, 34555.50

	# tuple with multiple items

	print(type(c))

	# c is of the type tuple

 More Ways to Create Tuples

 	Built-in function tuple() can be used to create a tuple from string, list or values returned by range() function.

	tpl1 = tuple(‘Mumbai’)

	tpl2 = tuple([10, 20, 30, 40, 50])

	tpl3 = tuple([(x, x**2) for x in range(5)])

	tpl4 = tuple(range(5))

	print(tpl1)

	# prints (‘M’, ‘u’, ‘m’, ‘b’, ‘a’, ‘i’)

	print(tpl2)

	# prints (10, 20, 30, 40, 50)

	print(tpl3)

	# prints ((0, 0), (1, 1), (2, 4), (3, 9), (4, 16))

	print(tpl4)

	# prints (0, 1, 2, 3, 4)

 	While creating a tuple from a list, the list may be a normal list (as in tpl2) or one generated through list comprehension (as in tpl3).

 Accessing Tuple Elements

 	Like string and list, tuple items too can be accessed using indices, as all of them are sequence types.
msg = (‘Handle’, ‘Exceptions’, ‘Like’, ‘a’, ‘boss’)

print(msg[1], msg[3])

 	Like strings and lists, tuples too can be sliced to yield smaller tuples.
print(msg[1:3])

print(msg[3:])

 	Entire tuple can be printed by just using the name of the tuple.
t = (‘Subbu’, 25, 58.44)

print(t)

 	Like strings and lists, tuples too can be iterated using a for loop.
tpl = (10, 20, 30, 40, 50)

for n in tpl:

print(n)

records = (

(‘Priyanka’, 24, 3455.50), (‘Shailesh’, 25, 4555.50),

(‘Subhash’, 25, 4505.50), (‘Sugandh’, 27, 4455.55)

)

for n, a, s in records:

print(n,a,s)

 Tuple Operations

 	Unlike lists, tuples are immutable.

	msg = (‘Fall’, ‘In’, ‘Line’)

	msg[0] =‘FALL’

	# error

	msg[1:3] = (‘Above’, ‘Mark’)

	# error

 	Tuples may can contain mutable objects like lists.
mutable lists, immutable string—all can belong to tuple

s = ([1, 2, 3, 4], [4, 5], ‘Ocelot’)

 	Items in a tuple can be repeated, i.e. tuple may contain duplicate items.

 	Common tuple operations are shown below:

	t = (12, 15, 13, 23, 22, 16, 17)

	# create tuple

	12 in t

	# return True since 12 is present in tuple t

	22 not in t

	# return False since 22 is present in tuple t

	len(t)

	# return number of items in tuple t

	tuple(‘Africa’)

	# converts the string to tuple (‘A’, ‘f’, ‘r’, ‘i’, ‘c’, ‘a’)

	max(t)

	# return maximum element in tuple t

	min(t)

	# return minimum element in tuple t

	sorted(t)

	# return sorted tuple, t remains unchanged

	sum(t)

	# return sum of all elements in tuple t

	t.index(15)

	# return index of item 15

	t.count(15)

	# returns number of times 15 occurs in tuple t

Since tuples are immutable operations like append, remove and insert do not work with tuple.

 	It is possible to concatenate two tuples. This can be done in multiple ways as shown below.
t1 = (1, 2, 3, 4)

t2 = (5, 6, 7, 8)

	# tuples can be concatenated to create a new tuple

	t3 = t1 + t2

	# t3 is now (1, 2, 3, 4, 5, 6, 7, 8)

	t4 = t1 + (10, 20, 30)

	# t4 is now (1, 2, 3, 4, 10, 20, 30)

	# t1’s individual elements cannot be changed, but t1 can be made to

	# refer to a new tuple

	t1 = t1 + t2

	# t1 now refers to (1, 2, 3, 4, 5, 6, 7, 8)

	t1 += t2

	# same as t1 = t1 + t2

	# tuples can be unpacked like lists

	t5 = (*t1, *t2)

	# t2 is now (1, 2, 3, 4, 5, 6, 7, 8)

 	It is possible to reverse a tuple. Tuples being immutable, this is not in-place reversal though. Reversal can be done in two ways shown below.

	tpl1 = tuple(‘Mumbai’)

	tpl1 = tuple(reversed(tpl1))

	print(tpl1)

	# prints (‘i’, ‘a’, ‘b’, ‘m’, ‘u’, ‘M’)

	tpl2 = tuple(‘Mumbai’)

	tpl2 = tpl2[::-1]

	print(tpl2)

	# prints (‘i’, ‘a’, ‘b’, ‘m’, ‘u’, ‘M’)

 	It is possible to compare two tuples. Comparison is done item by item till there is a mismatch. Some sample comparisons are shown below.
(10, 20, 30) < (10, 30, 20)

(10, 20) < (10, 20, -10)

(32, 42, 52) == (32.0, 42.0, 52.0)

 Tuple Varieties

 	It is possible to create a tuple of tuples.
a = (1, 3, 5, 7, 9)

b = (2, 4, 6, 8, 10)

c = (a, b)

print(c[0][0], c[1][2]) # 0th element of 0th tuple, 2nd ele of 1st tuple

 	A tuple may be embedded in another tuple.
x = (1, 2, 3, 4)

y = (10, 20, x, 30)

print(y) # outputs (10, 20, (1, 2, 3, 4), 30)

 	It is possible to unpack a tuple within a tuple using the *operator.
x = (1, 2, 3, 4)

y = (10, 20, *x, 30)

print(y) # outputs (10, 20, 1, 2, 3, 4, 30)

 Programs

 Problem 8.1

 Pass a tuple to the divmod() function and obtain the quotient and the remainder.

 Program

 result = divmod(17,3)

 print(result)

 t = (17, 3)

 result = divmod(*t)

 print(result)

 Output

 (5, 2)

 (5, 2)

 Tips

 	If we pass t to divmod() an error is reported. We have to unpack the tuple into two distinct values and then pass them to divmod().

 	divmod() returns a tuple consisting of quotient and remainder.

 Problem 8.2

 Write a Python program to perform the following operations:

 - Pack first 10 multiples of 10 into a tuple

 - Unpack the tuple into 10 variables, each holding 1 value

 - Unpack the tuple such that first value gets stored in variable x, last value in y and all values in between into disposable variables _

 - Unpack the tuple such that first value gets stored in variable i, last value in j and all values in between into a single disposable variable _

 Program

 tpl = (10, 20, 30, 40, 50, 60, 70, 8, 90, 100)

 a, b, c, d, e, f, g, h, i, j = tpl

 print(tpl)

 print(a, b, c, d, e, f, g, h, i, j)

 x, _, _, _, _, _, _, _, _, y = tpl

 print(x, y, _)

 i, *_, j = tpl

 print(i, j, _)

 Output

 (10, 20, 30, 40, 50, 60, 70, 8, 90, 100)

 10 20 30 40 50 60 70 8 90 100

 10 100 90

 10 100 [20, 30, 40, 50, 60, 70, 8, 90]

 Tips

 	Disposable variable _ is usally used when you do not wish to use the variable further, and is being used only as a place-holder.

 Problem 8.3

 A list contains names of boys and girls as its elements. Boys’ names are stored as tuples. Write a Python program to find out number of boys and girls in the list.

 Program

 lst = [‘Shubha’, ‘Nisha’, ‘Sudha’, (‘Suresh’,), (‘Rajesh’,), ‘Radha’]

 boys = 0

 girls = 0

 for ele in lst:

 if isinstance(ele, tuple):

 boys += 1

 else:

 girls += 1

 print(‘Boys = ‘, boys, ‘Girls = ‘, girls)

 Output

 Boys = 2 Girls = 4

 Tips

 	isinstance() functions checks whether ele is an instance of tuple type.

 	Note that since the tuples contain a single element, it is followed by a comma.

 Problem 8.4

 A list contains tuples containing roll number, names and age of student. Write a Python program to gather all the names from this list into another list.

 Program

 lst = [(‘A101’, ‘Shubha’, 23), (‘A104’, ‘Nisha’, 25), (‘A111’, ‘Sudha’, 24)]

 nlst = []

 for ele in lst:

 nlst = nlst + [ele[1]]

 print(nlst)

 Output

 [‘Shubha’, ‘Nisha’, ‘Sudha’]

 Tips

 	nlst is an empty to begin with. During each iteration name is extracted from the tuple using ele[1] and added to the current list of names in nlst.

 Problem 8.5

 Given the following tuple

 (‘F’, ‘l’, ‘a’, ‘b’, ‘b’, ‘e’, ‘r’, ‘g’, ‘a’, ‘s’, ‘t’, ‘e’, ‘d’)

 Write a Python program to carry out the following operations:

 - Add an ! at the end of the tuple

 - Convert a tuple to a string

 - Extract (‘b’, ‘b’) from the tuple

 - Find out number of occurences of ‘e’ in the tuple

 - Check whether ‘r’ exists in the tuple

 - Convert the tuple to a list

 - Delete characters ‘b, ‘b’, ‘e’, ‘r’ from the tuple

 Program

 tpl = (‘F’, ‘l’, ‘a’, ‘b’, ‘b’, ‘e’, ‘r’, ‘g’, ‘a’, ‘s’, ‘t’, ‘e’, ‘d’)

 # addition of ! is not possible as tuple is an immutable

 # so to add ! we need to create a new tuple and then make tpl refer to it

 tpl = tpl + (‘!’,)

 print(tpl)

 # convert tuple to string

 s = ‘’.join(tpl)

 print(s)

 # extract (‘b’, ‘b’) from the tuple

 t = tpl[3:5]

 print(t)

 # count number of ‘e’ in the tuple

 count = tpl.count(‘e’)

 print(‘count = ‘, count)

 # check whether ‘r’ exists in the tuple

 print(‘r’ in tpl)

 # Convert the tuple to a list

 lst = list(tpl)

 print(lst)

 # tuples are immutable, so we cannot remove elements from it

 # we need to split the tuple, eliminate the unwanted element and then merge the tuples

 tpl = tpl[:3] + tpl[7:]

 print(tpl)

 Output

 (‘F’, ‘l’, ‘a’, ‘b’, ‘b’, ‘e’, ‘r’, ‘g’, ‘a’, ‘s’, ‘t’, ‘e’, ‘d’, ‘!’)

 Flabbergasted!

 (‘b’, ‘b’)

 count = 2

 True

 [‘F’, ‘l’, ‘a’, ‘b’, ‘b’, ‘e’, ‘r’, ‘g’, ‘a’, ‘s’, ‘t’, ‘e’, ‘d’, ‘!’]

 (‘F’, ‘l’, ‘a’, ‘g’, ‘a’, ‘s’, ‘t’, ‘e’, ‘d’, ‘!’)

 Exercise

 [A] Answer the following:

 	Suppose a date is represented as a tuple (d, m, y). Write a program to create two date tuples and find the number of days between the two dates.

 	Create a list of tuples. Each tuple should contain an item and its price in float. Write a program to sort the tuples in descending order by price.

 	Store the data about shares held by a user as tuples containing the following information about shares:
Share name

Date of purchase

Cost price

Number of shares

Selling price

Write a program to determine:

- Total cost of the portfolio.

- Total amount gained or lost.

- Percentage profit made or loss incurred.

 	Write a program to remove empty tuple from a list of tuples.

 	Write a program to create following 3 lists:
- a list of names

- a list of roll numbers

- a list of marks

Generate and print a list of tuples containing name, roll number and marks from the 3 lists. From this list generate 3 tuples—one containing all names, another containing all roll numbers and third containing all marks.

 [B] Match the following for the values each range() function will generated when used in a for loop.

 	
 a. tpl1 = (‘A’,)

 	
 1. tuple of length 6

 	
 b. tpl1 = (‘A’)

 	
 2. tuple of lists

 	
 c. t = tpl[::-1]

 	
 3. Tuple

 	
 d. (‘A’, ‘B’, ‘C’, ‘D’)

 	
 4. list of tuples

 	
 e. [(1, 2), (2, 3), (4, 5)]

 	
 5. String

 	
 f. tpl = tuple(range(2, 5))

 	
 6. Sorts tuple

 	
 g. ([1, 2], [3, 4], [5, 6])

 	
 7. (2, 3, 4)

 	
 h. t = tuple(‘Ajooba’)

 	
 8. tuple of strings

 	
 i. [*a, *b, *c]

 	
 9. Unpacking of tuples in a list

 	
 j. (*a, *b, *c)

 	
 10. Unpacking of lists in a tuple

 [C] Which of the following properties apply to string, list and tuple?

 - Iterable

 - Sliceable

 - Indexable

 - Immutable

 - Sequence

 - Can be empty

 - Sorted collection

 - Ordered collection

 - Unordered collection

 - Elements can be accessed using their position in the collection

 [D] Which of the following operations can be performed on string, list and tuple?

 - a = b + c

 - a += b

 - Appending a new element at the end

 - Deletion of an element at the 0th position

 - Modification of last element

 - In place reversal

 9

 Sets

 	What are Sets?

 	Accessing Set Elements

 	Set Operations

 	Set Methods

 	Mathematical Set Operations

 	Updating Set Operations

 	Programs

 	Exercise

 KanNotes

 What are Sets?

 	Sets are like lists, with an exception that they do not contain duplicate entries.
a = set() # empty set, note the use of () instead of {}

b = {20} # set with one item

c = {‘Sanjay’, 25, 34555.50} # set with multiple items

d = {10, 10, 10, 10} # only one 10 gets stored

 	Set is an unordered collection. Hence order of insertion is not same as the order of access.
c = {15, 25, 35, 45, 55}

print(c) # prints {35, 45, 15, 55, 25}

 	set() function can be used to convert a string, list or tuple into a set.
lst = [10, 20, 30, 40, 50]

tpl = (‘Sanjay’, 25, 450000.00)

s = ‘Oceania’

s1 = set(lst)

s2 = set(tpl)

s3 = set(s) # will create the set {‘O’, ‘c’, ‘e’, ‘a’, ‘n’, ‘i’, ‘a’}

While creating a set using set(), repetitions are eliminated.

 	Sets like lists are mutable. Their contents can be changed.
s = {‘gate’, ‘fate’, ‘late’}

s.add(‘rate’) # adds one more element to set s

 	If we want an immutable set, we should use a frozenset.
s = frozenset({‘gate’, ‘fate’, ‘late’})

s.add(‘rate’) # error

 	A set cannot contain a set embedded in it.
s = {‘gate’, ‘fate’, {10, 20, 30}, ‘late’} # error, nested sets

 	Two sets cannot be added to create a third set
s = {10, 20, 30, 40, 50}

t = {100, 200, 300}

z = s + t # error

 Accessing Set Elements

 	Being an unordered collection, items in a set cannot be accessed using indices.

 	Sets cannot be sliced using [].

 	Entire set can be printed by just using the name of the set.
s = {‘Subbu’, 25, 58.44}

print(s)

 	Like strings, lists and tuples, sets too can be iterated over using a for loop.
s = {12, 15, 13, 23, 22, 16, 17}

for ele in s:

print(ele)

 Set Operations

 	Built-in functions and common set operations are shown below:

	s = {12, 15, 13, 23, 22, 16, 17}

	# create set

	12 in s

	# return True since 12 is present in set s

	22 not in s

	# return False since 22 is present in sets

	len(s)

	# return number of items in set s

	max(s)

	# return maximum element in set s

	min(s)

	# return minimum element in set s

	sorted(s)

	# return sorted set, s remains unchanged

	sum(s)

	# return sum of all elements in set s

 	It is possible to unpack a set using the *operator.
x = {1, 2, 3, 4}

print(*x) # outputs 1, 2, 3, 4

 Set Methods

 	Following functions can be used on sets:

	s = {12, 15, 13, 23, 22, 16, 17}

	t = {‘A’, ‘B’, ‘C’}

	s.update(t)

	# adds elements of t to s

	s.add(‘Hello’)

	# adds ‘Hello’ to s

	s.remove(15)

	# deletes 15 from s

	s.discard(101)

	# remove(101) would raise error, discard(101) won’t

	s.clear()

	# removes all elements

 	Following functions can be used on sets to check the relationship between them:

	s = {12, 15, 13, 23, 22, 16, 17}

	t = {13, 15, 22}

	print(s.isuperset(t))

	# prints True

	print(s.isubset(t))

	# prints False

	print(s.isdisjoint(t))

	# prints False

Since all elements of t are present in s, s is a superset of t and t is subset of s. If intersection of two sets is null, the sets are called disjoint sets.

 Mathematical Set Operations

 	Following union, intersection and difference operations can be carried out on sets:
sets

engineers = {‘Vijay’, ‘Sanjay’, ‘Ajay’, ‘Sujay’, ‘Dinesh’}

managers = {‘Aditya’, ‘Sanjay’}

union - all people in both categories

print(engineers | managers)

intersection - who are engineers and managers

print(engineers & managers)

difference - engineers who are not managers

print(engineers - managers)

difference - managers who are not engineers

print(managers - engineers)

symmetric difference - managers who are not engineers

and engineers who are not managers

print(managers ^ engineers)

a = {1, 2, 3, 4, 5}

b = {2, 4, 5}

print(a >= b) # prints True as a is superset of b

print(a <= b) # prints False as a is not a subset of b

 Updating Set Operations

 	Mathematical set operations can be extended to update an existing set.

	a |= b

	# update a with the result of a | b

	a &= b

	# update a with the result of a & b

	a -= b

	# update a with the result of a - b

	a ^= b

	# update a with the result of a ^ b

 Programs

 Problem 9.1

 What will be the output of the following program?

 a = {10, 20, 30, 40, 50, 60, 70}

 b = {33, 44, 51, 10, 20,50, 30, 33}

 print(a | b)

 print(a & b)

 print(a - b)

 print(b - a)

 print(a ^ b)

 print(a >= b)

 print(a <= b)

 Output

 {33, 70, 40, 10, 44, 50, 51, 20, 60, 30}

 {10, 50, 20, 30}

 {40, 60, 70}

 {33, 51, 44}

 {33, 70, 40, 44, 51, 60}

 False

 False

 Problem 9.2

 What will be the output of the following program?

 a = {1, 2, 3, 4, 5, 6, 7}

 b = {1, 2, 3, 4, 5, 6, 7}

 c = {1, 2, 3, 4, 5, 6, 7}

 d = {1, 2, 3, 4, 5, 6, 7}

 e = {3, 4, 1, 0, 2, 5, 8, 9}

 a |= e

 print(a)

 b &= e

 print(b)

 c -= e

 print(c)

 d ^= e

 print(d)

 Output

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 {1, 2, 3, 4, 5}

 {6, 7}

 {0, 6, 7, 8, 9}

 Problem 9.3

 Write a program to carry out the following operations on the given set

 s = {10, 2, -3, 4, 5, 88}

 - number of items in set s

 - maximum element in set s

 - minimum element in set s

 - sum of all elements in set s

 - obtain a new sorted set from s, set s remaining unchanged

 - report whether 100 is an element of set s

 - report whether -3 is an element of set s

 Program

 s = {10, 2, -3, 4, 5, 88}

 print(len(s))

 print(max(s))

 print(min(s))

 print(sum(s))

 t = sorted(s)

 print(t)

 print(100 in s)

 print(-3 not in s)

 Output

 6

 88

 -3

 106

 [-3, 2, 4, 5, 10, 88]

 False

 False

 Problem 9.4

 What will be the output of the following program?

 Program

 l = [10, 20, 30, 40, 50]

 t = (‘Sundeep’, 25, 79.58)

 s = ‘set theory’

 s1 = set(l)

 s2 = set(t)

 s3 = set(s)

 print(s1)

 print(s2)

 print(s3)

 Output

 {40, 10, 50, 20, 30}

 {25, 79.58, ‘Sundeep’}

 {‘h’, ‘s’, ‘t’, ‘y’, ‘’, ‘r’, ‘e’, ‘o’}

 Exercise

 [A] Answer the following:

 	A set contains names which begin either with A or with B. write a program to separate out the names into two sets, one containing names beginning with A and another containing names beginning with B.

 	Create an empty set. Write a program that adds five new names to this set, modifies one existing name and deletes two existing names in it.

 	What is the difference between the two set functions— discard() and remove().

 	Write a program to create a set containing 10 randomly generated numbers in the range 15 to 45. Count how many of these numbers are less than 30. Delete all numbers which are greater than 35.

 	What do the following set operators do?
|, &, ^, -

 	What do the following set operators do?
|=, &=, ^=, -=

 	How will you remove all duplicate elements present in a string, a list and a tuple.

 	Which operator is used for determining whether a set is a subset of another set?

 	What will be the output of the following program?
s = {‘Mango’, ‘Banana’, ‘Guava’, ‘Kiwi’}

s.clear()

print(s)

del(s)

print(s)

 	Which of the following is the correct way to create an empty set?
s1 = set()

s2 = {}

What are the types of s1 and s2? How will you confirm the type?

 10

 Dictionaries

 	What are Dictionaries?

 	Accessing Dictionary Elements

 	Dictionary Operations

 	Dictionary Methods

 	Nested Dictionary

 	Programs

 	Exercise

 KanNotes

 What are Dictionaries?

 	Dictionary is a collection of key-value pairs. Unlike sequence types they are indexed by keys.

 	Dictionaries are also known as maps or associative arrays.

 	Keys in a dictionary must be unique and immutable. So strings or tuples can be used as keys as they are immutable.

 	Ways to create dictionary:
a = {} # empty dictionary

b = {‘A101’: ‘Amol’, ‘A102’: ‘Anil’, ‘B103’: ‘Ravi’}

lst = [12, 13, 14, 15, 16]

e = dict.fromkeys(lst, 25) # keys - list items, all values set to 25

 	Key values in a dictionary are unique, but different keys may have same values paired with them.

 Accessing Dictionary Elements

 	Dictionary elements can be accessed using key as an index.

	b = {‘A101’: ‘Dinesh’, ‘A102’: ‘Shrikant’, ‘B103’: ‘Sudhir’}

	print(b[‘A102’])

	# prints value for key ‘A102’

	print(b)

	# prints all key-value pairs

 	Dictionary can be iterated over in three ways:
courses = {‘DAA’: ‘CS’, ‘AOA’: ‘ME’, ‘SVY’: ‘CE’ }

iterate over key-value pairs

for k, v in courses.items():

print(k, v)

iterate over keys

for k in courses.keys():

print(k)

iterate over keys - shorter way

for k in courses:

print(k)

iterate over values

for v in courses.values():

print(v)

 Dictionary Operations

 	Dictionaries are mutable. So we can perform add/delete/modify operations on a dictionary.

[image:]

 	Other common dictionary operations are shown below:

	len(courses)

	# return number of key-value pairs

	max(courses)

	# return maximum key value

	min(courses)

	# return minimum key value

	# membership

	‘ME101’ in courses

	# returns True is ME101 is present in courses

	‘CE102’ not in courses

	# returns True is CE102 is absent in courses

obtain keys in insertion order

lst = list(courses.keys())

obtain keys in insertion order - shorter way

lst = list(courses)

obtain sorted list of keys

lst = sorted(courses.keys())

obtain sorted list of keys - shorter way

lst = sorted(courses)

 Dictionary Methods

 	There are many dictionary methods. Many of the operations performed by them can also be performed using built-in functions. The useful dictionary methods are shown below:

	courses.clear()

	# clears all dictionary entries

	courses.update(d1)

	# adds dictionary entries in d1 to courses

 Nested Dictionary

 	Dictionaries can be nested.

[image:]

 Programs

 Problem 10.1

 Create a dictionary called students containing names and ages. Copy the dictionary into stud. Empty the students dictionary, as stud continues to hold the data.

 Program

 students = {‘Anil’: 23, ‘Sanjay’: 28, ‘Ajay’: 25}

 stud = students # shallow copy, stud starts referring to same dictionary

 students = {} # students now refers to an empty dictionary

 print(stud)

 Output

 {‘Anil’: 23, ‘Sanjay’: 28, ‘Ajay’: 25}

 Tips

 	By making a shallow copy, a new dictionary is not created. stud just starts pointing to the same data to which students was pointing.

 	Had we used students.clear() it would have cleared all the data, so students and stud both would have pointed to an empty dictionary.

 Problem 10.2

 Create a list of cricketers. Use this list to create a dictionary in which the list values become key values of the dictionary. Set the values of all keys to 50 in the dictionary created.

 Program

 lst = [‘Sunil’, ‘Sachin’, ‘Rahul’, ‘Kapil’, ‘Sunil’, ‘Rahul’]

 d = dict.fromkeys(lst, 50)

 print(len(lst))

 print(len(d))

 print(d)

 Output

 6

 4

 {‘Sunil’: 50, ‘Sachin’: 50, ‘Rahul’: 50, ‘Kapil’: 50}

 Tips

 	The list may contain duplicate items, whereas a dictionary always contains unique keys. Hence when the dictionary is created from list, duplicates are eliminated, as seen in the output.

 Problem 10.3

 Write a program to sort a dictionary in ascending/descending order by key and ascending/descending order by value.

 Program

 import operator

 d = {‘Oil’: 230, ‘Clip’: 150, ‘Stud’: 175, ‘Nut’: 35}

 print(‘Original dictionary: ‘, d)

 # sorting by key

 d1 = sorted(d.items())

 print(‘Asc. order by key: ‘, d1)

 d2 = sorted(d.items(), reverse = True)

 print(‘Des. order by key: ’, d2)

 # sorting by value

 d1 = sorted(d.items(), key = operator.itemgetter(1))

 print(‘Asc. order by value: ’, d1)

 d2 = sorted(d.items(), key = operator.itemgetter(1), reverse = True)

 print(‘Des. order by value: ’, d2)

 Output

 Original dictionary: {‘Oil’: 230, ‘Clip’: 150, ‘Stud’: 175, ‘Nut’: 35}

 Asc. order by key: [(‘Clip’, 150), (‘Nut’, 35), (‘Oil’, 230), (‘Stud’, 175)]

 Des. order by key: [(‘Stud’, 175), (‘Oil’, 230), (‘Nut’, 35), (‘Clip’, 150)]

 Asc. order by value: [(‘Nut’, 35), (‘Clip’, 150), (‘Stud’, 175), (‘Oil’, 230)]

 Des. order by value: [(‘Oil’, 230), (‘Stud’, 175), (‘Clip’, 150), (‘Nut’, 35)]

 Tips

 	By default items in a dictionary would be sorted as per the key.

 	To sort by values we need to use operator.itemgetter(1).

 	The key = parameter of sort() requires a key function (to be applied to be objects to be sorted) rather than a single key value.

 	operator.itemgetter(1) will give you a function that grabs the first item from a list-like object.

 	In general, operator.itemgetter(n) constructs a callable that assumes an iterable object (e.g. list, tuple, set) as input, and fetches the n-th element out of it.

 Problem 10.4

 Write a program to create three dictionaries and concatenate them to create fourth dictionary.

 Program

 d1 = {‘Mango’: 30, ‘Guava’: 20}

 d2 = {‘Apple’: 70, ‘Pineapple’: 50}

 d3 = {‘Kiwi’: 90, ‘Banana’: 35}

 d4 = {}

 for d in (d1, d2, d3):

 d4.update(d)

 print(d4)

 # one more way

 d5 = { **d1, **d2, **d3}

 print(d5)

 # will unpack only the keys

 d6 = { *d1, *d2, *d3}

 print(d6)

 Output

 {‘Mango’: 30, ‘Guava’: 20, ‘Apple’: 70, ‘Pineapple’: 50, ‘Kiwi’: 90, ‘Banana’: 35}

 {‘Mango’: 30, ‘Guava’: 20, ‘Apple’: 70, ‘Pineapple’: 50, ‘Kiwi’: 90, ‘Banana’: 35}

 {‘Apple’, ‘Guava’, ‘Kiwi’, ‘Mango’, ‘Banana’, ‘Pineapple’}

 Tips

 	Note that the items in a dictionary are not stored in the same order in which they are inserted.

 Problem 10.5

 Write a program to check whether a dictionary is empty or not.

 Program

 d1 = {‘Anil’: 45, ‘Amol’: 32}

 if bool(d1):

 print(‘Dictionary is not empty’)

 d2 = {}

 if not bool(d2):

 print(‘Dictionary is empty’)

 Output

 Dictionary is not empty

 Dictionary is empty

 Problem 10.6

 Suppose there are two dictionaries called boys and girls containing names as keys and ages as values. Write a program to merge the two dictionaries into a third dictionary.

 Program

 boys = {‘Nilesh’: 41, ‘Soumitra’: 42, ‘Nadeem’: 47}

 girls = {‘Rasika’: 38, ‘Rajashree’: 43, ‘Rasika’: 45}

 combined = {**boys, **girls}

 print(combined)

 combined = {**girls, **boys}

 print(combined)

 Output

 {‘Nilesh’: 41, ‘Soumitra’: 42, ‘Nadeem’: 47, ‘Rasika’: 45, ‘Rajashree’: 43}

 {‘Rasika’: 45, ‘Rajashree’: 43, ‘Nilesh’: 41, ‘Soumitra’: 42, ‘Nadeem’: 47}

 Tips

 	From the output it can be observed that the dictionaries are merged in the order listed in the expression.

 	As the merging takes place, duplicates get overwritten from left to right. So Rasika: 38 got overwritten with Rasika: 45.

 Problem 10.7

 For the following dictionary, write a program to report the maximum salary.

 Program

 [image:]

 Output

 10000

 6000

 Problem 10.8

 Suppose a dictionary contains roll numbers and names of students. Write a program to receive the roll number, extract the name corresponding to the roll number and display a message congratulating the student by his name. If the roll number doesn’t exist in the dictionary the message should be ‘Congratulations Student!’.

 Program

 students = {554: ‘Ajay’, 350: ‘Ramesh’, 395: ‘Rakesh’}

 rollno = int(input(‘Enter roll number:’))

 name = students.get(rollno, ‘Student’)

 print(f’Congratulations {name}!’)

 rollno = int(input(‘Enter roll number:’))

 name = students.get(rollno, ‘Student’)

 print(f’Congratulations {name}!’)

 Output

 Enter roll number: 350

 Congratulations Ramesh!

 Enter roll number: 450

 Congratulations Student!

 Exercise

 [A] State whether the following statements are True or False:

 	Dictionary elements can be accessed using position-based index.

 	Dictionaries are immutable.

 	courses.clear() will delete the dictionary object called courses.

 	It is possible to nest dictionaries.

 	It is possible to hold multiple values against a key in a dictionary.

 [B] Attempt the following:

 	Write a program that reads a string from the keyboard and creates dictionary containing frequency of each character occurring in the string. Also print these occurrences in the form of a histogram.

 	Create a dictionary containing names of students and marks obtained by them in three subjects. Write a program to replace the marks in three subjects with the total in three subjects, and average marks. Also report the topper of the class.

 	Given the following dictionary:

[image:]

Write a program to perform the following operations:

- Add a key to portfolio called ‘MF’ with values ‘Relaince’ and ‘ABSL’.

- Set the value of ‘accounts’ to a list containing ‘Axis’ and ‘BOB’.

- Sort the items in the list stored under the ‘shares’ key.

- Delete the list stored under ‘ornaments’ key.

 	Create two dictionaries—one containing grocery items and their prices and another containing grocery items and quantity purchased. By using the values from these two dictionaries compute the total bill.

 	Which functions will you use to fetch all keys, all values and key value pairs from a given dictionary?

 	Create a dictionary of 10 user names and passwords. Receive the user name and password from keyboard and search for them in the dictionary. Print appropriate message on the screen based on whether a match is found or not.

 	Given the following dictionary

[image:]

Write a program to perform the following operations:

- Print marks obtained by Amol in English.

- Set marks obtained by Rama in Maths to 77.

- Sort the dictionary by name.

 	Create a dictionary which stores the following data:

[image:]

Write a program to perform the following operations:

- Find the status of a given interface.

- Find interface and IP of all interfaces which are up.

- Find the total number of interfaces.

- Add two new entries to the dictionary.

 11

 Comprehensions

 	What are Comprehensions?

 	List Comprehension

 	Set Comprehension

 	Dictionary Comprehension

 	Programs

 	Exercise

 KanNotes

 What are comprehensions?

 	Comprehensions offer an easy and compact way of creating lists, sets and dictionaries.

 	A comprehension works by looping or iterating over items and assigning them to a container like list, set or dictionary.

 	This container cannot be a tuple as tuple being immutable is unable to receive assignments.

 List Comprehension

 	List comprehension consists of brackets containing an expression followed by a for clause, and zero or more for or if clauses.

 	So general form of a list comprehension is
lst = [expression for var in sequence [optional for and/or if]]

 	Examples of list comprehension:
generate 20 random numbers in the range 10 to 100

a = [random.randint(10, 100) for n in range(20)]

generate square and cube of all numbers between 0 and 10

a = [(x, x**2, x**3) for x in range(10)]

convert a list of strings to a list of integers

a = [int(x) for x in [‘10’, ‘20’, ‘30’, ‘40’]

 	Examples of use of if in list comprehension:
generate a list of even numbers in the range 10 to 30

a = [n for n in range(10, 30) if n % 2 == 0]

from a list delete all numbers having a value between 20 and 50

a = [num for num in a if num > 20 and num < 50]

 	Example of use of if-else in list comprehension:
if if-else both are used, place them before for

replace a vowel in a string with !

a = [‘!’ if alphabet in ‘aeiou’ else alphabet for alphabet in ‘Technical’]

 	Example of use of multiple fors and if in list comprehension:
flatten a list of lists

arr = [[1,2,3,4], [5,6,7,8], [10, 11, 12, 13]]

b = [n for ele in arr for n in ele]

one way # * can be used to unpack a list

c = [*arr[0], *arr[1], *arr[2]] # one more way

 	Note the difference between nested for in a list comprehension and a nested comprehension
produces [4, 5, 6, 5, 6, 7, 6, 7, 8]. Uses nested for

lst = [a + b for a in [1, 2, 3] for b in [3, 4, 5]]

produces [[4, 5, 6], [5, 6, 7], [6, 7, 8]]. Uses nested comprehension

lst = [[a + b for a in [1, 2, 3]] for b in [3, 4, 5]]

 	Example of use of multiple fors and if in list comprehension:
generate all unique combinations of 1, 2 and 3

a = [(i, j, k) for i in [1,2,3] for j in [1,2,3] for k in [1, 2, 3] if i != j \ and j !=k and k != i]

 Set Comprehension

 	Like list comprehensions, set comprehensions offer an easy way of creating sets. It consists of braces containing an expression followed by a for clause, and zero or more for or if clauses.

 	So general form of a set comprehension is
s = {expression for var in sequence [optional for and/or if]}

 	Examples of set comprehension:
generate a set containing square of all numbers between 0 and 10

a = {x**2 for x in range(10)}

from a set delete all numbers between 20 and 50

a = {num for num in a if num > 20 and num < 50}

 Dictionary Comprehension

 	Genreral form of a dictionary comprehension is as follows:
dict_var = {key:value for (key, value) in dictonary.items()}

 	Examples of dictionary comprehension:
d = {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘e’: 5}

obtain dictionary with each value cubed

d1 = {k: v ** 3 for (k, v) in d.items()}

print(d1)

obtain dictionary with each value cubed if value > 3

d2 = {k: v ** 3 for (k, v) in d.items() if v > 3}

print(d2)

Identify odd and even entries in the dictionary

d3 = {k: (‘Even’ if v % 2 == 0 else ‘Odd’) for (k, v) in d.items()}

 Programs

 Problem 11.1

 Using list comprehension, write a program to generate a list of numbers in the range 2 to 50 that are divisible by 2 and 4.

 Program

 lst = [num for num in range(2,51) if num % 2 == 0 and num % 4 == 0] print(lst)

 Output

 [4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48]

 Problem 11.2

 Write a program to flatten the following list using list comprehension:

 mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 Program

 mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 a = [num for lst in mat for num in lst]

 print(a)

 Output

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

 Problem 11.3

 Write a program to add two 3 x 4 matrices using list comprehension.

 Program

 mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat2 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat3 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

 # nested list comprehension

 mat3 = [[mat1[i][j] + mat2[i][j] for j in range(len(mat1[0]))]

 for i in range(len(mat1))]

 print(mat3)

 Output

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 Tips

 	Nested list comprehension is evaluated in the context of the for that follows it.

 Problem 11.4

 Write a program to create a set containing some randomly generated numbers in the range 15 to 45. Count how many of these numbers are less than 30. Delete all numbers which are greater than 30.

 Program

 import random

 r = {int(15 + 30 * random.random()) for num in range(10)}

 print(r)

 count = len({num for num in r if num < 30})

 print(count)

 s = {num for num in r if num < 30}

 r = r - s

 print(r)

 Output

 {32, 35, 36, 38, 41, 43, 21, 23, 25, 26}

 4

 {32, 35, 36, 38, 41, 43}

 Tips

 	Deletion of elements cannot be done while iterating the set. Hence a separate set s containing elements below 30 is first created and then r = r - s is done to delete set s elements from set r.

 Problem 11.5

 Write a program using list comprehension to eliminate empty tuples from a list of tuples.

 Program

 lst = [(), (), (10), (10, 20), (‘’,), (10, 20, 30), (40, 50), (), (45)]

 lst = [tpl for tpl in lst if tpl]

 print(lst)

 Output

 [10, (10, 20), (‘’,), (10, 20, 30), (40, 50), 45]

 Tips

 	if tpl returns True if the tuple is not empty.

 Problem 11.6

 Given a string, split it on whitespace, capitalize each element of the resulting list and join them back into a string. Your implementation should use a list comprehension.

 Program

 s = ‘dreams may change, but friends are forever’

 words = [‘’.join(w.capitalize() for w in s.split())]

 print(words)

 Output

 [‘DreamsMayChange,ButFriendsAreForever’]

 Tips

 	To rebuild the list from capitalized elements, start with an empty string.

 Problem 11.7

 From a dictionary with string keys create a new dictionary with the vowels removed from the keys.

 Program

 words = { ‘Tub’: 1, ‘Toothbrush’: 2, ‘Towel’: 3, ‘Nailcutter’: 4}

 d = {‘’.join(alpha for alpha in k if alpha not in ‘aeiou’): v for (k, v) in words.items()}

 print(d)

 Output

 {‘Tb’: 1, ‘Tthbrsh’: 2, ‘Twl’: 3, ‘Nlcttr’: 4}

 Tips

 	We have use a list comprehension nested inside a dictionary comprehension.

 	The list comprehension builds a new key starting with an empty string, adding only those characters from the key which are not vowels.

 	The list comprehension is fed with keys by the dictionary comprehension.

 Problem 11.8

 Write a program to add two 3 x 4 matrices using

 	lists

 	list comprehension

 Program

 mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat2 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

 mat3 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

 # iterate through rows

 for i in range(len(mat1)):

 # iterate through columns

 for j in range(len(mat1[0])):

 mat3[i][j] = mat1[i][j] + mat2[i][j]

 print(mat3)

 mat3 = [[mat1[i][j] + mat2[i][j] for j in range(len(mat1[0]))] for i in range(len(mat1))]

 print(mat3)

 Output

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 [[2, 4, 6, 8], [10, 12, 14, 16], [18, 20, 22, 24]]

 Tips

 	Nested list comprehension is evaluated in the context of the for that follows it.

 Problem 11.9

 Suppose a dictionary contains following information for 5 employees:

 emp = {

 ‘A101’: {’name’: ‘Ashish’, ‘age’: 30, ‘salary’: 21000},

 ‘B102’: {‘name’: ‘Dinesh’, ‘age’: 25, ‘salary’: 12200},

 ‘A103’: {‘name’: ‘Ramesh’, ‘age’: 28, ‘salary’: 11000},

 ‘D104’: {‘name’: ‘Akheel’, ‘age’: 30, ‘salary’: 18000},

 ‘A105’: {‘name’: ‘Akaash’, ‘age’: 32, ‘salary’: 20000}

 }

 Using dictionary comprehensions, write a program to:

 - Dictionary of all those codes and values, where codes that start with ‘A’.

 - Dictionary of all codes and names.

 - Dictionary of all codes and ages.

 - Dictionary of all codes and ages, where age is more than 30.

 - Dictionary of all codes and names, where names start with ‘A’.

 - Dictionary of all codes and salaries, where salary is in the range 13000 to 20000.

 Program

 emp = {

 ‘A101’: {‘name’: ‘Ashish’, ‘age’: 30, ‘salary’: 21000},

 ‘B102’: {‘name’: ‘Dinesh’, ‘age’: 25, ‘salary’: 12200},

 ‘A103’: {‘name’: ‘Ramesh’, ‘age’: 28, ‘salary’: 11000},

 ‘D104’: {‘name’: ‘Akheel’, ‘age’: 30, ‘salary’: 18000},

 ‘A105’: {‘name’: ‘Akaash’, ‘age’: 32, ‘salary’: 20000}

 }

 d1 = {k: v for (k, v) in emp.items() if k.startswith(‘A’)}

 d2 = {k: v[‘name’] for (k, v) in emp.items()}

 d3 = {k: v[‘age’] for (k, v) in emp.items()}

 d4 = {k: v[‘age’] for (k, v) in emp.items() if v[‘age’] > 30}

 d5 = {k: v[‘name’] for (k, v) in emp.items() if v[‘name’].startswith(‘A’)}

 d6 = {k: v[‘salary’] for (k, v) in emp.items() if v[‘salary’] > 13000 and v[‘salary’] <= 20000}

 print(d1)

 print(d2)

 print(d3)

 print(d4)

 print(d5)

 print(d6)

 Output

 {‘A101’: {‘name’: ‘Ashish’, ‘age’: 30, ‘salary’: 21000}, ‘A103’: {’name’: ‘Ramesh’, ‘age’: 28, ‘salary’: 11000}, ‘A105’: {‘name’: ‘Akaash’, ‘age’: 32, ‘salary’: 20000}}

 {‘A101’: ‘Ashish’, ‘B102’: ‘Dinesh’, ‘A103’: ‘Ramesh’, ‘D104’: ‘Akheel’, ‘A105’: ‘Akaash’}

 {‘A101’: 30, ‘B102’: 25, ‘A103’: 28, ‘D104’: 30, ‘A105’: 32}

 {‘A105’: 32}

 {‘A101’: ‘Ashish’, ‘D104’: ‘Akheel’, ‘A105’: ‘Akaash’}

 {‘D104’: 18000, ‘A105’: 20000}

 Tips

 	Note that the data has been organized in nested directories.

 	To access ‘Ashish’ we need to use the syntax emp[‘A101’][‘name’]

 	To access 32 we need to use the syntax emp[‘A105’][‘age’]

 Exercise

 [A] State whether the following statements are True or False:

 	Tuple comprehension offers a fast and compact way to generate a tuple.

 	List comprehension and dictionary comprehension can be nested.

 	A list being used in a list comprehension cannot be modified when it is being iterated.

 	Sets being immutable cannot be used in comprehension.

 	Comprehensions can be used create a list, set or a dictionary.

 [B] Answer the following:

 	Write a program that generates a list of integer coordinates for all points in the first quadrant from (1, 1) to (5, 5). Use list comprehension.

 	Using list comprehension, write a program to create a list by multiplying each element in the list by 10.

 	Write a program to generate first 20 Fibonacci numbers using list comprehension.

 	Write a program to generate two lists using list comprehension. One list should contain first 20 odd numbers and another should contain first 20 even numbers.

 	Suppose a list contains positive and negative numbers. Write a program to create two lists—one containing positive numbers and another containing negative numbers.

 	Suppose a list contains 5 strings. Write a program to convert all these strings to uppercase.

 	Write a program that converts list of temperatures in Fahrenheit degrees to equivalent Celsius degrees using list comprehension.

 	Write a program to generate a 2D matrix of size 4 x 5 containing random multiples of 4.

 	Write a program that converts words present in a list into uppercase and stores them in a set.

 12

 Functions

 	What are Functions?

 	Communication with Functions

 	Types of Arguments

 	Unpacking Arguments

 	Programs

 	Exercise

 KanNotes

 What are Functions?

 	Python function is a block of code that performs a specific and well-defined task.

 	Two main advantages of function are:

	They help us divide our program into multiple tasks. For each task we can define a function. This makes the code modular.

	Functions provide a reuse mechanism. The same function can be called any number of times.

 	There are two types of Python functions:

	Built-in functions - Ex. len(), sorted(), min(), max(), etc.

	User-defined functions

 	Given below is an example of user-defined function. Note that the body of the function must be indented suitably.
function definition

def fun():

print(‘My opinions may have changed’)

print(‘But not the fact that I am right’)

 	A function can be called any number of times.
fun() # first call

fun() # second call

 	When a function is called, control is transferred to the function, its statements are executed and control is returned to place from where the call originated.

 	Python convention for function names:
- Always use lowercase characters

- Connect multiple words using _
Example: cal_si(), split_data(), etc.

 Communication with Functions

 	Communication with functions is done using parameters/arguments passed to it and the value(s) returned from it.

 	The way to pass values to a function and return value from it is shown below:
def cal_sum(x, y, z):

return x + y + z

pass 10, 20, 30 to cal_sum(), collect value returned by it

s1 = cal_sum(10, 20, 30)

pass a, b, c to cal_sum(), collect value returned by it

a, b, c = 1, 2, 3

s2 = cal_sum(a, b, c)

 	return statement returns control and value from a function. return without an expression returns none.

 	To return multiple values from a function we can put them into a list/tuple/set/dictionary and then return it.

 	Suppose we pass arguments a, b, c to a function and collect them in x, y, z. Changing x, y, z in the function body, changes a, b, c. Thus a function in Python is always called by reference.

 	A function can return different types through different return statements.

 	A function that reaches end of execution without a return statement will always return None.

 Types of Arguments

 	Arguments in a Python function can be of 4 types:

	Positional arguments

	Keyword arguments

	Variable-length positional arguments

	Variable-length keyword arguments

Positional and keyword arguments are often called ‘required’ arguments, whereas, variable-length arguments are called ‘optional’ arguments.

 	Positional arguments must be passed in correct positional order. For example, if a function expects an int, float and string to be passed to it, then the call to this function should look like
def fun(i, j, k):

print(i + j)

print(k.upper())

fun(10, 3.14, ‘Rigmarole’) # correct call

fun(‘Rigmarole’, 3.14, 10) # error, incorrect order

While passing positional arguments, number of arguments passed must match with number of arguments received.

 	Keyword arguments can be passed out of order. Python interpreter uses keywords (variable names) to match the values passed with the arguments used in the function definition.
def print_it(i, a, str):

print(i, a, str)

	print_it(a = 3.14, i = 10, str = ‘Sicilian’)

	# keyword, ok

	print_it(str = ‘Sicilian’, a = 3.14, i = 10)

	# keyword, ok

	print_it(str = ‘Sicilian’, i = 10, a = 3.14)

	# keyword, ok

	print_it(s = ‘Sicilian’, j = 10, a = 3.14)

	# error

An error is reported in the last call since the variable names in the call and the definition do not match.

 	In a call we can use positional as well as keyword arguments. If we do so, the positional arguments must precede keyword arguments.
def print_it(i, a, str):

print(i, a, str)

	print_it(10, a = 3.14, str = ‘Ngp’)

	# ok

	print_it(10, str = ‘Ngp’, a = 3.14)

	# ok

	print_it(str = ‘Ngp’, 10, a = 3.14)

	# error, positional after keyword

	print_it(str = ‘Ngp’, a = 3.14, 10)

	# error, positional after keyword

 	Sometimes number of positional arguments to be passed to a function is not certain. In such cases, variable-length positional arguments can be received using *args.
def print_it(*args):

print()

for var in args:

print(var, end = ‘’)

	print_it(10)

	# 1 arg, ok

	print_it(10, 3.14)

	# 2 args, ok

	print_it(10, 3.14,‘Sicilian’)

	# 3 args, ok

	print_it(10, 3.14, ‘Sicilian’, ‘Punekar’)

	# 4 args, ok

args used in definition of print_it() is a tuple. * indicates that it will hold all the arguments passed toprint_it(). The tuple can be iterated through using a for loop.

 	Sometimes number of keyword arguments to be passed to a function is not certain. In such cases, variable-length keyword arguments can be received using **kwargs.
def print_it(**kwargs):

print()

for name, value in kwargs.items():

print(name, value, end = ‘’)

	print_it(a = 10)

	# keyword, ok

	print_it(a = 10, b = 3.14)

	# keyword, ok

	print_it(a = 10, b = 3.14, s = ‘Sicilian’)

	# keyword, ok

	dct = {‘Student’: ‘Ajay’, ‘Age’: 23}

	print_it(**dct)

	# ok

kwargs used in definition of print_it() is a dictionary containing variable names as keys and their values as values. * indicates that it will hold all the arguments passed to print_it().

 	We can use any other names in place of args andkwargs. We cannot use more than one args and more than one kwargs while defining a function.

 	If a function is to receive required as well as optional arguments then they must occur in following order:
- positional arguments

- variable-length positional arguments

- keyword arguments

- variable-length keyword arguments

def print_it(i, j, *args, x, y, **kwargs):

print()

print(i, j, end = ‘’)

for var in args:

print(var, end = ‘’)

print(x, y, end = ‘’)

for name, value in kwargs.items():

print(name, value, end = ‘’)

nothing goes to args, kwargs

print_it(10, 20, x = 30, y = 40)

100, 200 go to args, nothing goes to kwargs

print_it(10, 20, 100, 200, x = 30, y = 40)

100, 200 go to args, nothing goes to kwargs

print_it(10, 20, 100, 200, y = 40, x = 30)

100, 200 go to args. a = 5, b = 6, c = 7 go to kwargs

print_it(10, 20, 100, 200, x = 30, y = 40, a = 5, b = 6, c = 7)

error, 30 40 go to args, nothing left for required args x, y

print_it(10, 20, 30, 40)

 	While defining a function default value can be given to arguments. Default value will be used if we do not pass the value for that argument during the call.
def fun(a, b = 100, c = 3.14):

return a + b + c

	w = fun(10)

	# passes 10 to a, b is taken as 100, c as 3.14

	x = fun(20, 50)

	# passes 20, 50 to a, b. c is taken as 3.14

	y = fun(30, 60, 6.28)

	# passes 30, 60, 6.28 to a, b, c

	z = fun(1, c = 3, b = 5)

	# passes 1 to a, 5 to b, 3 to c

 	Note that while defining a function default arguments must follow non-default arguments.

 Unpacking Arguments

 	Suppose a function is expecting positional arguments and the arguments to be passed are in a list or tuple. In such a case we need to unpack the list or tuple using * operator before passing it to the function.
def print_it(a, b, c, d, e):

print(a, b, c, d, e)

lst = [10, 20, 30, 40, 50]

tpl = (‘A’, ‘B’, ‘C’, ‘D’, ‘E’)

print_it(*lst)

print_it(*tpl)

 	Suppose a function is expecting keyword arguments and the arguments to be passed are in a dictionary. In such a case we need to unpack the dictionary using ** operator before passing it to the function.
def print_it(name = ‘Sanjay’, marks = 75):

print(name, marks)

d = {‘name’: ‘Anil’, ‘marks’: 50}

print_it(*d)

print_it(**d)

The first call to print_it() passes keys to it, whereas, the second call passes values.

 Programs

 Problem 12.1

 Write a program to receive three integers from keyboard and get their sum and product calculated through a user-defined function cal_sum_prod().

 Program

 def cal_sum_prod(x, y, z):

 ss = x + y + z

 pp = x * y * z

 return ss, pp

 a = int(input(‘Enter a:’))

 b = int(input(‘Enter b:’))

 c = int(input(‘Enter c:’))

 s, p = cal_sum_prod(a, b, c)

 print(s, p)

 Output

 Enter a: 10

 Enter b: 20

 Enter c: 30

 60 6000

 Tips

 	Multiple values can be returned from a function as a tuple.

 Problem 12.2

 Pangram is a sentence that uses every letter of the alphabet. Write a program that checks whether a given string is pangram or not, through a user-defined function ispangram().

 Program

 def ispangram(s):

 alphaset = set(‘abcdefghijklmnopqrstuvwxyz’)

 return alphaset <= set(s.lower())

 print(ispangram(‘The quick brown fox jumps over the lazy dog’))

 print(ispangram(‘Crazy Fredrick bought many very exquisite opal jewels’))

 Output

 True

 True

 Tips

 	set() converts the string into a set of characters present in the string.

 	<= checks whether alphaset is a subset of the given string.

 Problem 12.3

 Write a Python program that accepts a hyphen-separated sequence of words as input and call a function convert() which converts it into a hyphen-separated sequence after sorting them alphabetically. For example, if the input string is

 ‘here-come-the-dots-followed-by-dashes’

 then, the converted string should be

 ‘by-come-dashes-dots-followed-here-the’

 Program

 def convert(s1):

 items = [s for s in s1.split(‘-’)]

 items.sort()

 s2 = ‘-’.join(items)

 return s2

 s = ‘here-come-the-dots-followed-by-dashes’

 t = convert(s)

 print(t)

 Output

 by-come-dashes-dots-followed-here-the

 Tips

 	We have used list comprehension to create a list of words present in the string s1.

 	The join() method returns a string concatenated with the elements of an iterable. In our case the iterable is the list called items.

 Problem 12.4

 Write a Python function to create and return a list containing tuples of the form (x, x2, x3) for all x between 1 and 20 (both included).

 Program

 def generate_list():

 lst = list()

 for i in range(1, 11):

 lst.append((i, i ** 2, i ** 3))

 return lst

 l = generate_list()

 print(l)

 Output

 [(1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64), (5, 25, 125), (6, 36, 216), (7, 49, 343), (8, 64, 512), (9, 81, 729), (10, 100, 1000)]

 Tips

 	range(1, 11) produces a list of numbers from 1 to 10.

 	append() adds a new tuple to the list in each iteration.

 Problem 12.5

 A palindrome is a word or phrase which reads the same in both directions. Given below are some palindromic strings:

 deed

 level

 Malayalam

 Rats live on no evil star

 Murder for a jar of red rum

 Write a program that defines a function ispalindrome() which checks whether a given string is a palindrome or not. Ignore spaces while checking for palindrome.

 Program

 def ispalindrome(s):

 t = s.lower()

 left = 0

 right = len(t) - 1

 while right >= left:

 if t[left] == ‘’:

 left += 1

 if t[right] == ‘’:

 right -= 1

 if t[left] != t[right]:

 return False

 left += 1

 right -= 1

 return True

 print(ispalindrome(‘Malayalam’))

 print(ispalindrome(‘Rats live on no evil star’))

 print(ispalindrome(‘Murder for a jar of red rum’))

 Output

 True

 True

 True

 Tips

 	Since strings are immutable the string converted to lowercase has to be collected in another string t.

 Problem 12.6

 Write a program that defines a function convert() that receives a string containing a sequence of whitespace separated words and returns a string after removing all duplicate words and sorting them alphanumerically.

 For example, if the string passed to convert() is

 s = ‘Sakhi was a singer because her mother was a singer, and Sakhi\‘s mother was a singer because her father was a singer’

 then, the output should be:

 Sakhi Sakhi’s a and because father her mother singer singer, was

 Program

 def convert(s):

 words = [word for word in s.split(‘’)]

 return ‘’.join(sorted(list(set(words))))

 s = ‘I felt happy because I saw the others were happy and because I knew I should feel happy, but I wasn\’t really happy’

 t = convert(s)

 print(t)

 s = ‘Sakhi was a singer because her mother was a singer, and Sakhi\’s mother was a singer because her father was a singer’

 t = convert(s)

 print(t)

 Output

 I and because but feel felt happy happy, knew others really saw should the wasn’t were

 Sakhi Sakhi’s a and because father her mother singer singer, was

 Tips

 	set() removes duplicate data automatically.

 	list() converts the set into a list.

 	sorted() sorts the list data and returns sorted list.

 	Sorted data list is converted to a string using join(), appending a space at the end of each word, except the last.

 Problem 12.7

 Write a program that defines a function count_alphabets_digits() that accepts a string and calculates the number of alphabets and digits in it. It should return these values as a dictionary. Call this function for some sample strings.

 Program

 def count_alphabets_digits(s):

 d={‘Digits’: 0, ‘Alphabets’: 0}

 for ch in s:

 if ch.isalpha():

 d[‘Alphabets’] += 1

 elif ch.isdigit():

 d[‘Digits’] += 1

 else:

 pass

 return(d)

 d = count_alphabets_digits(‘James Bond 007’)

 print(d)

 d = count_alphabets_digits(‘Kholi Number 420’)

 print(d)

 Output

 {‘Digits’: 3, ‘Alphabets’: 9}

 {‘Digits’: 3, ‘Alphabets’: 11}

 Tips

 	pass doesn’t do anything on execution.

 Problem 12.8

 Write a program that defines a function called frequency() which computes the frequency of words present in a string passed to it. The frequencies should be returned in sorted order by words in the string.

 Program

 def frequency(s):

 freq = {}

 for word in s.split():

 freq[word] = freq.get(word, 0) + 1

 return freq

 sentence = ‘It is true for all that that that that \

 that that that refers to is not the same that \

 that that that refers to’

 d = frequency(sentence)

 words = sorted(d)

 for w in words:

 print (‘%s:%d’ % (w, d[w]))

 Output

 It:1

 all:1

 for:1

 is:2

 not:1

 refers:2

 same:1

 that:11

 the:1

 to:2

 true:1

 Tips

 	We did not use freq[word] = freq[word] + 1 because we have not initialized all word counts for each unique word to 0 to begin with.

 	When we use freq.get(word, 0), get() searches the word. If it is not found, the second parameter, i.e. 0 will be returned. Thus, for first call for each unique word, the word count is properly initialized to 0.

 	sorted() returns a sorted list of key values in the dictionary.

 	w, d[w] yields the word and its frequency count stored in the dictionary d.

 Problem 12.9

 Write a program that defines two functions called create_sent1() and create_sent2(). Both receive following 3 lists:

 subjects = [‘He’, ‘She’]

 verbs = [‘loves’, ‘hates’]

 objects = [‘TV Serials’,‘Netflix’]

 Both functions should form sentences by picking elements from these lists and return them. Use for loops increate_sent1() and list comprehension in create_sent2().

 Program

 def create_sent1(sub, ver, obj):

 lst = []

 for i in range(len(sub)):

 for j in range(len(ver)):

 for k in range(len(obj)):

 sent = sub[i] + ‘’ + ver[j] + ‘’ + obj[k]

 lst.append(sent)

 return lst

 def create_sent2(sub, ver, obj):

 return [(s + ‘’ + v + ‘’ + o) for s in sub for v in ver for o in obj]

 subjects = [‘He’, ‘She’]

 verbs = [‘loves’, ‘hates’]

 objects = [‘TV Serials’,‘Netflix’]

 lst1 = create_sent1(subjects, verbs, objects)

 for l in lst1:

 print(l)

 print()

 lst2 = create_sent2(subjects, verbs, objects)

 for l in lst2:

 print(l)

 Output

 He loves TV Serials

 He loves Netflix

 He hates TV Serials

 He hates Netflix

 She loves TV Serials

 She loves Netflix

 She hates TV Serials

 She hates Netflix

 He loves TV Serials

 He loves Netflix

 He hates TV Serials

 He hates Netflix

 She loves TV Serials

 She loves Netflix

 She hates TV Serials

 She hates Netflix

 Exercise

 [A] Answer the following:

 	Write a program that defines a function count_lower_upper() that accepts a string and calculates the number of uppercase and lowercase alphabets in it. It should return these values as a dictionary. Call this function for some sample strings.

 	Write a program that defines a function compute() that calculates the value of n + nn + nnn + nnnn, where n is digit received by the function. Test the function for digits 4 and 7.

 	Write a program that defines a function create_array() to create and return a 3D array whose dimensions are passed to the function. Also initialize each element of this array to a value passed to the function.

 	Write a program that defines a function create_list() to create and return a list which is an intersection of two lists passed to it.

 	Write a program that defines a function sanitize_list() to remove all duplicate entries from the list that it receives.

 	Which of the calls to print_it() in the following program will report errors.
def print_it(i, a, s, *args):

print()

print(i, a, s, end = ‘’)

for var in args:

print(var, end = ‘’)

print_it(10, 3.14)

print_it(20, s = ‘Hi’, a = 6.28)

print_it(a = 6.28, s = ‘Hello’, i = 30)

print_it(40, 2.35, ‘Nag’, ‘Mum’, 10)

 	Which of the calls to fun() in the following program will report errors.
def fun(a, *args, s = ‘!’):

print(a, s)

for i in args:

print(i, s)

fun(10)

fun(10, 20)

fun(10, 20, 30)

fun(10, 20, 30, 40, s = ‘+’)

 13

 Recursion

 	Recursive Functions

 	Recursive Factorial Function

 	Types of Recursion

 	Recursion Limit

 	Programs

 	Exercise

 KanNotes

 Recursive Functions

 	A Python function can be called from within its body. When we do so it is called a recursive function.
def fun():

some statements

if condition:

fun() # recursive call

 	Recursive call always leads to an infinite loop. So a provision must be made to get outside this infinite loop. The provision is done by making the recursive call either in if block or in else block.

 	If recursive call is made in if block, else block should contain the end condition logic. If recursive call is made in else block, if block should contain the end condition logic.

 	Recursion is an alternative for a loop in logics that are expressible in the form of themselves. This means computation of a function can be described in terms of the function itself.

 	For example, suppose we wish to calculate factorial value of n. Then n! = n * (n - 1) * (n - 2) * (n - 3) * … * 2 * 1
We can write this as

[image:]

 	In terms of function this can be written as
factorial(n) = 1 if n = 0

[image:]

 	If we are to obtain sum of digits of an integer n, then the recursive function can be written as

[image:]

 	Following tips will help you understand recursive functions better:
- Fresh set of variables are born during each function call—normal call and recursive call.

- Variables die when control returns from a function.

- Recursive function may or may not have a return statement.

 Recursive Factorial Function

 	A simple program that calculates factorial of a given number using a recursive function is given below, followed by a brief explanation of its working.
def refact(n):

if n == 0:

return 1

else:

p = n * refact(n - 1)

return p

num = int(input(‘Enter any number:’))

fact = refact(num)

print(‘Factorial value = ‘, fact)

 	Suppose 2 is supplied as input, we should get the output as 2, since 2! evaluates to 2.

 	It becomes easier to follow the working of a recursive function if we make copies of the function on paper and then perform a dry run of the program to follow the control flow. In reality multiple copies of function do not exist in memory.

 	Trace the control flow of the recursive factorial function in Figure 13.1. Assume that we are trying to find factorial value of 2. The solid arrows indicate the call to the function, whereas dashed arrows indicate return from the function.

 	Note that return 1 goes to work only during the last call. All other calls return via return p.

[image:]

 Figure 13.1. Flow of control in recursive factorial function

 Types of Recursion

 	Two types of recursions can exist:

	Head recursion

	Tail recursion

 	Head recursion - In this type of recursion the recursive call is made before other processing in the function.
def headprint(n):

if n == 0:

return

else:

headprint(n - 1)

print(n)

headprint(10)

Here firstly the recursive calls happen and then the printing takes place. Hence last value of n, i.e. 1 gets printed first. So numbers get printed in the order 1 to 10.

 	Tail recursion - In this type of recursion processing is done before the recursive call. The tail recursion is similar to a loop—the function executes all the statements before making the recursive call.
def tailprint(n):

if n == 11:

return

else:

print(n)

tailprint(n + 1)

tailprint(11)

Here firstly the printing takes place and then the recursive call is made. Hence first value of n, i.e. 1 gets printed first. So numbers get printed in the order 10 to 1.

 Recursion Limit

 	In head recursion we don’t get the result of our calculation until we have returned from every recursive call. So the state (local variables) has to be saved before making the next recursive call. This results in consumption of more memory. Too many recursive calls may result into an error.

 	Default recursion limit in Python is usually set to a small value (approximately, 10 **4). So if we provide a large input to the recursive function, a RecursionError will be raised. This is done to avoid a stack overflow.

 	The setrecursionlimit() function in sys module permits us to set the recursion limit. Once set to 10^6 large inputs can be handled without any errors.

 Programs

 Problem 13.1

 If a positive integer is entered through the keyboard, write a recursive function to obtain the prime factors of the number.

 Program

 def factorize(n, i):

 if i <= n:

 if n % i == 0:

 print(i, end =’,’)

 n = n // i

 else:

 i += 1

 factorize(n, i)

 num = int(input(‘Enter a number:’))

 print(‘Prime factors are:’)

 factorize(num, 2)

 Output

 Enter a number: 50

 Prime factors are:

 2, 5, 5,

 Enter a number: 24

 Prime factors are:

 2, 2, 2, 3,

 Tips

 	Since the smallest prime factor that a number can have is 2, while calling factorize(), in addition to num we have also passed 2.

 	In factorize() we keep checking, starting with 2, whether i is a factor of n (means, can i divide n exactly). If so, we print that factor, reduce n and again call factorize() recursively. If not, we increment i and callfactorize() to check whether the new i is a factor of n.

 Problem 13.2

 A positive integer is entered through the keyboard, write a recursive function to calculate sum of digits of the 5-digit number.

 Program

 def rsum(num):

 if num != 0:

 digit = num % 10

 num = int(num / 10)

 sum = digit + rsum(num)

 else:

 return 0

 return sum

 n = int(input(‘Enter number:’))

 rs = rsum(n)

 print(‘Sum of digits = ‘, rs)

 Output

 Enter number:

 345

 Sum of digits = 12

 Tips

 	In the rsum() function, we extract the last digit, reduce the number and call rsum() with reduced value of num. Thus if the number entered is 3256, the call becomes s = 6 + rsum(325).

 	During each call additions are kept pending, for example the addition to 6 is kept pending as the program calls rsum(325) to obtain sum of digits of 325.

 	The recursive calls end when n falls to 0, whereupon the function returns a 0, because sum of digits of 0 is 0. The 0 is returned to the previous pending call, i.e. s = 3 + rsum (0). Now s = 3 + 0 is completed and the control reaches return s. Now the value of s, i.e. 3 is returned to the previous call made during the pending addition 2 + rsum (3). This way all pending calls are completed and finally the sum of 3256 is returned.

 	In short, return 0 goes to work only once (during the last call to rsum()), whereas, for all previous calls return s goes to work.

 Problem 13.3

 Paper of size A0 has dimensions 1189 mm x 841 mm. Each subsequent size A(n) is defined as A(n-1) cut in half, parallel to its shorter sides. Write a program to calculate and print paper sizes A0, A1, A2, … A8 using recursion.

 Program

 def papersizes(i, n, l, b):

 if n != 0:

 print(f’A{i}: L = {int(l)} B = {int(b)}’)

 newb = l / 2

 newl = b

 n -= 1

 i += 1

 papersizes(i, n, newl, newb)

 papersizes(0, 7, 1189, 841)

 Ouput

 A0: L = 1189 B = 841

 A1: L = 841 B = 594

 A2: L = 594 B = 420

 A3: L = 420 B = 297

 A4: L = 297 B = 210

 A5: L = 210 B = 148

 A6: L = 148 B = 105

 Tips

 [image:]

 Figure 13.2. Different paper sizes.

 	Figure 13.2 shows how the different paper sizes are obtained. In papersizes(), i is used to obtain the digit in A0, A1, A2, etc., whereas n is used to keep track of number of times the function should be called. The moment n falls to 0, the recursive calls are stopped. Alternately, we could have dropped n and stopped recursive calls when i reaches 7.

 Problem 13.4

 Write a recursive function to obtain the first 25 numbers of a Fibonacci sequence. In a Fibonacci sequence the sum of two successive terms gives the third term. Following are the first few terms of the Fibonacci sequence:

 1 1 2 3 5 8 13 21 34 55 89….

 Program

 def fibo(old, current, terms):

 if terms >= 1:

 new = old + current

 print(f‘{new}’, end = ‘\t’)

 terms = terms - 1

 fibo(current, new, terms)

 old = 1

 current = 1

 print(f‘{old}’, end = ‘\t’)

 print(f‘{current}’, end = ‘\t’)

 fibo(old, current, 23)

 Output

 [image:]

 Tips

 	This program generates the Fibonacci sequence of numbers using recursion. terms is used to keep track of when to stop recursive calls. Since the first two terms are printed before calling fibo(), we have generated only 23 terms through the recursive calls.

 Problem 13.5

 A positive integer is entered through the keyboard; write a function to find the binary equivalent of this number using recursion.

 Program

 import sys

 def dec_to_binary(n):

 r = n % 2

 n = int(n / 2)

 print(r, n)

 if n != 0:

 dec_to_binary(n)

 print(r, endl = ‘’)

 sys.setrecursionlimit(10 ** 6)

 num = int(input(‘Enter the number:’))

 print(num)

 print(‘The binary equivalent is:’)

 dec_to_binary(num)

 Output

 Enter the number:

 32

 The binary equivalent is:

 100000

 Enter the number:

 45

 The binary equivalent is:

 101101

 Tips

 	To obtain binary equivalent of a number, we have to keep dividing the dividend till it doesn’t become 0. Finally, the remainders obtained during each successive division must be written in reverse order to get the binary equivalent.

 	Since the remainders are to be written in the reverse order, we start printing only when n falls to 0, otherwise we make a call to dec_to_binary() with a reduced dividend value.

 Problem 13.6

 Write a recursive function to obtain the running sum of first 25 natural numbers.

 Program

 def runningSum(n):

 if n == 0:

 return 0

 else:

 s = n + runningSum(n - 1)

 return(s)

 max = int(input(‘Enter the positive largest number for running sum:’))

 if max > 0:

 sum = runningSum(max)

 print(f‘Running Sum: {sum}’)

 else:

 print(‘Entered number is negative’)

 Output

 Enter the positive largest number for running sum: 25 Running Sum: 325

 Tips

 	We calculate the running sum as we calculate the factorial value, starting from n and then go on reducing it moving towards 0. We stop on reaching 0.

 Exercise

 [A] State whether the following statements are True or False:

 	If a recursive function uses three variables a, b and c, then the same set of variables are used during each recursive call.

 	Multiple copies of the recursive function are created in memory.

 	A recursive function must contain at least 1 return statement.

 	Every iteration done using a while or for loop can be replaced with recursion.

 	Logics expressible in the form of themselves are good candidates for writing recursive functions.

 	Tail recursion is similar to a loop.

 [B] Answer the following:

 	Following program calculates sum of first 5 natural numbers using tail recursion. Rewrite the function to obtain the sum using head recursion.
def tailsum(n, rsum):

if n == 0:

return rsum

else:

return tailsum(n - 1, rsum + n)

s = tailsum(5, 0)

print(s)

 	There are three pegs labeled A, B and C. Four disks are placed on peg A. The bottom-most disk is largest, and disks go on decreasing in size with the topmost disk being smallest. The objective of the game is to move the disks from peg A to peg C, using peg B as an auxiliary peg. The rules of the game are as follows:
- Only one disk may be moved at a time, and it must be the top disk on one of the pegs.

- A larger disk should never be placed on the top of a smaller disk.

Write a program to print out the sequence in which the disks should be moved such that all disks on peg A are finally transferred to peg C.

 14

 Functional Programming

 	Functional Programming

 	Functions as First-class Values

 	Lambda Functions

 	Higher Order Functions

 	Map, Filter, Reduce

 	map() Function

 	filter() Function

 	reduce() Function

 	Using Lambda with map(), filter(), reduce()

 	Where are they Useful?

 	Programs

 	Exercise

 KanNotes

 Functional Programming

 	In functional programming a problem is treated as evaluation of one or more functions.

 	Hence a given problem is decomposed into a set of functions. These functions provide the main source of logic in the program.

 Functions as First Class Values

 	Python facilitates functional programming by treating functions as ‘first-class’ data values. This means that:
- Functions can be assigned to variables and then called using these variables.

- Functions can be passed as arguments to function and returned from function.

- Functions can be built at execution time, the way lists, tuples, etc. can be.

 	Example of assigning a function to a variable and calling the function using the variable:
def func():

print(‘Hello’)

def sum(x, y):

print(x + y)

	f = func

	# assignment of function to a variable

	f()

	# call to func()

	g = sum

	# assignment of function to a variable

	g(10, 20)

	# call to sum()

 	Example of passing a function as argument to a function:
def sum(x, y, f):

print(x + y)

f()

def func():

print(‘Hello’)

	f = func

	# assignment of function to a variable

	sum(10, 20, f)

	# pass function as argument to a function

 	Example of building function at execution time is discussed in the next section on lambda functions.

 Lambda Functions

 	Normal functions have names. They are defined using the def keyword.

 	Lambda functions do not have names. They are defined using the lambda keyword and are built at execution time.

 	Lambda functions are commonly used for short functions that are convenient to define at the point where they are called.

 	Lambda functions are also called anonymous functions or inline functions.

 	A lambda function can take any number of arguments but can return only one value. Its syntax is:
lambda arguments: expression

: separates the parameters to be passed to the lambda function and the function body. The result of running the function body is returned implicitly.

 	A few examples of lambda functions
function that receives an argument and returns its cube lambda n: n * n * n

function that receives 3 arguments and returns average of them lambda x, y, z: (x + y + z) / 3

function that receives a string, strips any whitespace and returns

the uppercase version of the string

lambda s: s.trim().upper()

 	Lambda functions are often used as an argument to other functions. For example, the above lambdas can be passed to print() function to print the value that they return.

	print((lambda n: n * n * n)(3))

	# 27

	print((lambda x, y, z: (x + y + z) / 3)(10, 20, 30))

	# 20.0

	print((lambda s: s.lstrip().rstrip().upper())(‘Ngp’))

	# NGP

 	The lambda can also be assigned to a variable and then invoked.
p = lambda n: n * n * n

q = lambda x, y, z: (x + y + z) / 3

r = lambda s: s.lstrip().rstrip().upper()

print(p(3))

print(q(10, 20, 30))

print(r(‘Nagpur’))

 	Container types can also be passed to a lambda function. For example, a lambda function that calculates average of numbers in a list can be passed to print() function:
lst1 = [1, 2, 3, 4, 5]

lst2 = [10, 20, 30, 40, 50]

print((lambda l: sum(l) / len(l)) (lst1))

print((lambda l: sum(l) / len(l)) (lst2))

 Higher Order Functions

 	A higher order function is a function that that can receive other functions as arguments or return them.

 	We can pass a lambda function to sorted() function to sort a dictionary by values.
d = {‘Oil’: 230, ‘Clip’: 150, ‘Stud’: 175, ‘Nut’: 35}

lambda takes a dictionary item and returns a value

d1 = sorted(d.items(), key = lambda kv: kv[1])

print(d1) # prints [(‘Nut’, 35), (‘Clip’, 150), (‘Stud’, 175), (‘Oil’, 230)]

The sorted() function uses a parameter key. It specifies a function of one argument that is used to extract a comparison for each element in the first argument ofsorted(). The default value of key is None, indicating that the elements in first argument are to be compared directly.

 	To facilitate functional programming Python provides 3 higher order functions—map(), filter() and reduce(). Before we see how to use these functions, we need to understand the map, filter and reduce operations.

 Map, Filter, Reduce

 	A map operation applies a function to each element in the sequence like list, tuple, etc. and returns a new sequence containing the results. For example:
- Finding square root of all numbers in the list and returning a list of these roots.

- Converting all characters in the list to uppercase and returning the uppercase characters’ list.

 	A filter operation applies a function to all the elements of a sequence. A sequence of those elements for which the function returns True is returned. For example:
- Checking whether each element in a list is an alphabet and returning a list of alphabets.

- Checking whether each element in a list is odd and returning a list of odd numbers.

 	A reduce operation performs a rolling computation to sequential pairs of values in a sequence and returns the result. For example:
- Obtaining product of a list of integers and returning the product.

- Concatenating all strings in a list and returning the final string.

 	Usually, map, filter, reduce operations mentioned above would need a for loop and/or if statement to control the flow while iterating over elements of sequence types like strings, lists, tuples.

 	If we use Python functions map(), filter(), reduce() we do not need a for loop or if statement to control the flow. This lets the programmer focus on the actual computation rather than on the details of loops, branches, and control flow.

 map() Function

 	Use of map() function:
import math

def fun(n):

return n * n

	lst1 = [5, 10, 15, 20, 25]

	lst2 = map(math.radians, lst1)

	lst3 = map(math.factorial, lst1)

	lst4 = map(fun, lst1)

	print(list(lst2))

	# prints list of radians of all values in lst1

	print(list(lst3))

	# prints list of factorial of all values in lst1

	print(list(lst4))

	# prints list of squares of all values in lst1

 	General form of map() function is
map(function_to_apply, list_of_inputs)

map() returns a map object which can be converted to a list using

list() function.

 filter() Function

 	Use of filter() function:
def fun(n):

if n % 5 == 0:

return True

else:

return False

	lst1 = [‘A’, ‘X’, ‘Y’, ‘3’, ‘M’, ‘4’, ‘D’]

	lst2 = filter(str.isalpha, lst1)

	print(list(lst2))

	# prints [‘A’, ‘X’, ‘Y’, ‘M’, ‘D’]

	lst3 = [5, 10, 18, 27, 25]

	lst4 = filter(fun, lst3)

	print(list(lst4))

	# prints [5, 10, 25]

 	General form of filter() function is:
filter(function_to_apply, list_of_inputs)

filter() returns a filter object which can be converted to a list using

list() function.

 reduce() Function

 	Use of reduce() function:
from functools import reduce

def getsum(x, y):

return x + y

def getprod(x, y):

return x * y

	lst = [1, 2, 3, 4, 5]

	s = reduce(getsum, lst)

	p = reduce(getprod, lst)

	print(s)

	# prints 15

	print(p)

	# prints 120

Here the result of addition of previous two elements is added to the next element, till the end of the list. In our program this translates into operations like ((((1 + 2) + 3) + 4) + 5) and ((((1 * 2) * 3) * 4) * 5).

 	General form of reduce() function is:
reduce(function_to_apply, list_of_inputs)

The reduce() function operation performs a rolling computation to sequential pairs of values in a sequence and returns the result.

 	You can observe that map(), filter() and reduce() abstract away control flow code.

 Using Lambda with map(), filter(), reduce()

 	We can use map(), filter() and reduce() with lambda functions to simplify the implementation of functions that operate over sequence types like, strings, lists, tuples, etc.

 	Since map(), filter() and reduce() expect a function to be passed to them, we can also pass lambda functions to them, as shown below.
using lambda with map()

lst1 = [5, 10, 15, 20, 25]

lst2 = map(lambda n: n * n, lst1)

print(list(lst2))

using lambda with filter()

lst3 = [5, 10, 18, 27, 25]

lst4 = filter(lambda n: n % 5 == 0, lst3)

print(list(lst4))

using lambda with reduce()

from functools import reduce

lst = [1, 2, 3, 4, 5]

s = reduce(lambda x, y: x + y, lst)

p = reduce(lambda x, y: x * y, lst)

print(s)

print(p)

 	If required map(), filter() and reduce() can be used together.
def fun(n):

return n > 1000

lst = [10, 20, 30, 40, 50]

l = filter(fun, map(lambda x: x * x, lst))

print(list(l))

 	Here map() and filter() are used together. map() obtains a list of square of all elements in a list. filter() then filters out only those squares which are bigger than 1000.

 Where are they Useful?

 	Relational databases use the map/filter/reduce paradigm. A typical SQL query to obtain the maximum salary that a skilled worker gets from an Employees table will be:
SELECT max(salary) FROM Employees WHERE grade = ‘Skilled’

The same query can be written in terms of map(), filter() and reduce() as:

reduce(max, map(get_salary, filter(lambda x: x.grade() == ‘Skilled’, employees)))

Here employees is a sequence, i.e. a list of lists, where each list has the data for one employee

grade = ‘Skilled’ is a filter

get_salary is a map which returns the salary field from the list and max is a reduce

In SQL equivalent of map, filter, reduce are called project, select and aggregate respectively.

 	If we can manage our program using in terms of map, filter, and reduce, and lambda functions then we can run each operation in a separate threads and/or different processors and still get the same results. Multithreading is discussed in detail in Chapter 24.

 Programs

 Problem 14.1

 Define three functions fun(), disp() and msg(), store them in a list and call them one by one in a loop.

 Program

 def fun():

 print(‘In fun’)

 def disp():

 print(‘In disp’)

 def msg():

 print(‘In msg’)

 lst = [fun, disp, msg]

 for f in lst:

 f()

 Output

 In fun

 In disp

 In msg

 Problem 14.2

 Suppose there are two lists, one containing numbers from 1 to 6, and other containing umbers from 6 to 1. Write a program to obtain a list that contains elements obtained by adding corresponding elements of the two lists.

 Program

 lst1 = [1, 2, 3, 4, 5, 6]

 lst2 = [6, 5, 4, 3, 2, 1]

 result = map(lambda n1, n2: n1+n2, lst1, lst2)

 print(list(result))

 Output

 [7, 7, 7, 7, 7, 7]

 Tips

 	lambda function receives two numbers and returns their sum.

 	map() function applies lambda function to each pair of elements from lst1 and lst2.

 	The map() function returns a map object which is then converted into a list using list() before printing.

 Problem 14.3

 Write a program to create a new list by obtaining square of all numbers in a list.

 Program

 lst1 = [5, 7, 9, -3, 4, 2, 6]

 lst2 = list(map(lambda n: n ** 2, lst1))

 print(lst2)

 Output

 [25, 49, 81, 9, 16, 4, 36]

 Tips

 	lambda function receives a number and returns its square.

 	map() function applies lambda function to each element from lst1.

 	The map() function returns a map object which is then converted into a list using list() before printing.

 Problem 14.4

 Though map() function is available ready-made in Python, can you define one yourself and test it?

 Program

 def my_map(fun, seq):

 result = []

 for ele in seq:

 result.append(fun(ele))

 return result

 lst1 = [5, 7, 9, -3, 4, 2, 6]

 lst2 = list(my_map(lambda n: n ** 2, lst1))

 print(lst2)

 Output

 [25, 49, 81, 9, 16, 4, 36]

 Tips

 	lambda function receives a number and returns its square.

 	my_map() function applies lambda function to each element from lst1.

 	The map() function returns a map object which is then converted into a list using list() before printing.

 Problem 14.5

 Following data shows names, ages and marks of students in a class:

 Anil, 21, 80

 Sohail, 20, 90

 Sunil, 20, 91

 Shobha, 18, 93

 Anil, 19, 85

 Write a program to sort this data on multiple keys in the order name, age and marks.

 Program

 import operator

 lst = [(‘Anil’, 21, 80), (‘Sohail’, 20, 90), (‘Sunil’, 20, 91), (‘Shobha’, 18, 93), (‘Anil’, 19, 85), (‘Shobha’, 20, 92)]

 print(sorted(lst, key = operator.itemgetter(0, 1, 2)))

 print(sorted(lst, key = lambda tpl: (tpl[0], tpl[1], tpl[2])))

 Output

 [(‘Anil’, 19, 85), (‘Anil’, 21, 80), (‘Shobha’, 18, 93), (‘Shobha’, 20, 92), (‘Sohail’, 20, 90), (‘Sunil’, 20, 91)]

 [(‘Anil’, 19, 85), (‘Anil’, 21, 80), (‘Shobha’, 18, 93), (‘Shobha’, 20, 92), (‘Sohail’, 20, 90), (‘Sunil’, 20, 91)]

 Tips

 	Since there are multiple data items about a student, they have been put into a tuple.

 	Since there are multiple students, all tuples have been put in a list.

 	Two sorting methods have been used. In the first method itemgetter() specifies the sorting order. In the second method a lambda has been used to specify the sorting order.

 Problem 14.6

 Suppose a dictionary contain key-value pairs, where key is an alphabet and value is a number. Write a program that obtains the maximum and minimum values form the dictionary.

 Program

 d = {‘x’:500, ‘y’:5874, ‘z’: 560}

 key_max = max(d.keys(), key = (lambda k: d[k]))

 key_min = min(d.keys(), key = (lambda k: d[k]))

 print(‘Maximum Value: ‘, d[key_max])

 print(‘Minimum Value: ‘, d[key_min])

 Output

 Maximum Value: 5874

 Minimum Value: 500

 Exercise

 [A] State whether the following statements are True or False:

 	lambda function cannot be used with reduce() function.

 	lambda, map(), filter(), reduce() can be combined in one single expression.

 	Though functions can be assigned to variables, they cannot be called using these variables.

 	Functions can be passed as arguments to function and returned from function.

 	Functions can be built at execution time, the way lists, tuples, etc. can be.

 	Lambda functions are always nameless.

 [B] Using lambda, map(), filter() and reduce() or a combination thereof to perform the following tasks:

 	Suppose a dictionary contains type of pet (cat, dog, etc.), name of pet and age of pet. Write a program that obtains the sum of all dog’s ages.

 	Consider the following list:
lst = [1.25, 3.22, 4.68, 10.95, 32.55, 12.54]

The numbers in the list represent radii of circles. Write a program to obtain a list of areas of these circles rounded off to two decimal places.

 	Consider the following lists:
nums = [10, 20, 30, 40, 50, 60, 70, 80]

strs = [‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’]

Write a program to obtain a list of tuples, where each tuple contains a number from one list and a string from another, in the same order in which they appear in the original lists.

 	Suppose a dictionary contains names of students and marks obtained by them in an examination. Write a program to obtain a list of students who obtained more than 40 marks in the examination.

 	Consider the following list:
lst = [‘Malayalam’, ‘Drawing’, ‘madamIamadam’, ‘1234321’]

Write a program to out those strings which are palindromes.

 	A list contains names of employees. Write a program to filter out those names whose length is more than 8 characters.

 	A dictionary contains following information about 10 employees:
First name

Last name

Age

Grade (Skilled, Semi-skilled, Highly-skilled)

Write a program to obtain a list of employees (first name + last name) who
 are Highly-skilled.

 	Consider the following list:
lst = [‘Benevolent’, ‘Dictator’, ‘For’, ‘Life’]

Write a program to obtain a string ‘Benevolent Dictator For Life’.

 	Consider the following list of students in a class.
lst = [‘Rahul’, ‘Priya’, ‘Chaaya’, ‘Narendra’, ‘Prashant’]

Write a program to obtain a list in which all the names are converted to
 uppercase.

 15

 Modules and Packages

 	The Main Module

 	Multiple Modules

 	Importing a Module

 	Variations of import

 	Search Sequence

 	Same Code, Different Interpretation

 	Packages

 	Third-party Packages

 	Programs

 	Exercise

 KanNotes

 The Main Module

 	A module is a .py file containing definitions and statements. So all .py files that we created for our programs are modules.

 	When we execute a program its module name is _______main_______. This name is available in the variable_______name_______.
def display():

print(‘You cannot make History if you use Incognito Mode’)

def show():

print(‘Pizza is a pie chart of how much pizza is left’)

print(_______name_______)

display()

show()

On execution of this program, we get the following output:

_______ main_______

You cannot make History if you use Incognito Mode

Pizza is a pie chart of how much pizza is left

 Multiple Modules

 	There are two reasons why we may want to create a program that contains multiple modules:

	It makes sense to split a big program into multiple .py files, where each .py file acts as a module.
Benefit - Ease of development and maintenance.

	You may need a set of handy functions in several programs. In such a case instead of copying these functions in different program files, we may keep them in one file and use them in different programs.
Benefit - Reuse of existing code.

 Importing a Module

 	To use the definition and statements in a module in another module, we need to ‘import’ it into current module.
functions.py

def display():

print(‘Earlier rich owned cars, while poor had horses’)

def show():

print(‘Now everyone has car, while only rich own horses’)

usefunctions.py

import functions

functions.display()

functions.show()

 	When we execute ‘usefunctions.py’, it runs as a module with name _______ main_______.

 	import functions makes the definitions in ‘functions.py’ available in ‘usefunctions.py’.

 	A module can import multiple modules.
import math

import random

import functions

a = 100

b = 200

print(_______name_______)

print(math.sin(0.5))

prinr(math.cos(0.5))

print(random.random())

print(random.randint(30, 45))

functions.display()

functions.show()

Here_______name_______contains_______ main_______indicating that we are executing the main module. random and math are standard modules. functions is a user-defined module.

 Variations of import

 	The import statement can be used in multiple forms.
import math

import random

is same as

import maths, random

 	If we wish, we can import specific names from a module.
from maths import sin, cos, tan

from functions import display

from myfunctions import * # imports all functions

 	We can rename a module while importing it. We can then use the new name in place of the original module name.
import functions as fun

fun.display()

or even

from functions import display as disp

disp()

 Search Sequence

 	If we import a module called ‘myfuncs’, following search sequence will be followed:
- Interpreter will first search for a built-in module called ‘myfuncs’.

- If such a module is not found, then it will search for it in directory list given by the variable sys.path.

 	The list in the sys.path variable contains directory from where the script has been executed, followed by a list of directories as specified in PYTHONPATH environment variable.

 	If we want, we can modify the sys.path variable using assignment.

 	We can print the list of directories in sys.path using:
for p in sys.path

print(p)

 Same Code, Different Interpretation

 	Suppose we have a module called functions in ‘functions.py’. If this module has functions display() and main(). We want to use this program sometime as an independent script, and at other times as a module from which we can use display() function.

 	To achieve this, we need to write the code in this fashion:
functions.py

def display():

print(‘Wright Brothers are responsible for 9/11 too’)

def main():

print(‘If you beat your own record, you win as well as lose’)

print(‘Internet connects people at a long distance’)

print(‘Internet disconnects people at a short distance’)

display()

if (_______name_______== ‘_______main_______’):

main()

If we run it as an independent program, if will be satisfied. As a result, main() will be called. The name of this function need not be main().

If we import this module in another program, if will fail, so main() will not be called. However, the program can call display() independently.

 Packages

 	The way drives, folders, subfolders help us organize files in an OS, packages help us organize sub-packages and modules.

 	A particular directory is treated as a package if it contains a file named init .py in it. The directory may contain other sub-packages and modules in it. init .py file may be empty or it may contain some initialization code for the package.

 	Suppose there is a package called pkg containing a module called mod.py. If the module contains functions f1() and f2() then the directory structure would be as follows:
Directory - pkg

Contents of pkg directory - mod.py and_______init_______.py

Contents of mod.py - f1() and f2()

 	Program to use f1() and f2() would be as follows:
mod.py

def f1():

print(‘Inside function f1’)

def f2():

print(‘Inside function f2’)

client.py

import pkg.mod

mod.f1()

mod.f2()

 Third-party Packages

 	Pythonistas in Python community create software and makes it available for use for other programmers. They use PyPI—Python Package Index (www.pypi.org) to distribute their software. PyPI maintains the list of such third-party Python packages available.

 	There are third-party packages available for literally doing everything under the sun.

 	You too can register at PyPI and upload your packages there. You should follow the guidelines given at www.pypi.org to create the package, build it and upload it to the Python Package Index.

 	pip is a commonly used tool for installing packages from PyPI.

 Programs

 Problem 15.1

 Write a Python program that is organized as follows:

 Packages:

 messages.funny

 messages.curt

 Modules:

 modf1.py, modf2.py, modf3.py in package messages.funny

 modc1.py, modc2.py, modc3.py in package messages.curt

 Functions:

 funf1() in module modf1

 funf2() in module modf2

 funf3() in module modf3

 func1() in module modc1

 func2() in module modc2

 func3() in module modc3

 Use all the functions in a program client.py.

 Program

 Directory structure will be as follows:

 messages

 _______ init_______.py

 funny

 _______ init_______.py

 modf1.py

 modf2.py

 modf3.py

 curt

 _______ init_______.py

 modc1.py

 modc2.py

 modc3.py

 client.py

 Of these, messages, funny and curt are directories, rest are files. All _______ init_______.py are empty files.

 # modf1.py

 def funf1():

 print(‘The ability to speak several languages is an asset…’)

 print(‘ability to keep your mouth shut in any language is priceless’)

 # modf2.py

 def funf2():

 print(‘If you cut off your left arm…’)

 print(‘then your right arm would be left’)

 # modf3.py

 def funf3():

 print(‘Alcohol is a solution!’)

 # modc1.py

 def func1():

 print(‘Light travels faster than sound…’)

 print(‘People look intelligent, till they open their mouth’)

 # modc2.py

 def func2():

 print(‘There is no physical evidence to say that today is Tuesday…’)

 print(‘We have to trust someone who kept the count since first day’)

 # modc3.py

 def func3():

 print(‘We spend five days a week pretending to be someone else…’)

 print(‘in order to spend two days being who we are’)

 # client.py

 import messages.funny.modf1

 import messages.funny.modf2

 import messages.funny.modf3

 import messages.curt.modc1

 import messages.curt.modc2

 import messages.curt.modc3

 messages.funny.modf1.funf1()

 messages.funny.modf2.funf2()

 messages.funny.modf3.funf3()

 messages.curt.modc1.func1()

 messages.curt.modc2.func2()

 messages.curt.modc3.func3()

 Tips

 	Directory structure is very important. For a directory to qualify as a package, it has to contain a file init .py.

 Problem 15.2

 Rewrite the import statements in Program 15.1, such that using functions in different modules becomes convenient.

 Program

 from messages.curt.modc1 import func1

 from messages.curt.modc2 import func2

 from messages.curt.modc3 import func3

 from messages.funny.modf1 import funf1

 from messages.funny.modf2 import funf2

 from messages.funny.modf3 import funf3

 funf1()

 funf2()

 funf3()

 func1()

 func2()

 func3()

 Tips

 	Benefit - Calls to functions does not need the dotted syntax.

 	Limitation - Only the specified function gets imported.

 Problem 15.3

 Can we rewrite the following imports using * notation?

 from messages.curt.modc1 import func1

 from messages.curt.modc2 import func2

 from messages.curt.modc3 import func3

 from messages.funny.modf1 import funf1

 from messages.funny.modf2 import funf2

 from messages.funny.modf3 import funf3

 Program

 We may use the following import statements:

 # client.py

 from messages.curt.modc1 import *

 from messages.curt.modc2 import

 * from messages.curt.modc3 import *

 from messages.funny.modf1 import *

 from messages.funny.modf2 import *

 from messages.funny.modf3 import *

 funf1()

 funf2()

 funf3()

 func1()

 func2()

 func3()

 Tips

 	Limitation - Since there is only one function in each module, using * is not so useful.

 	Also, * is not so popular as it does not indicate which function/class are we importing.

 Exercise

 [A] Answer the following:

 	Suppose there are three modules m1.py, m2.py, m3.py, containing functionsf1(), f2() and f3() respectively. How will you use those functions in your program?

 	Write a program containing functions fun1(), fun2(), fun3() and some statements. Add suitable code to the program such that you can use it as a module or a normal program.

 	Suppose a module mod.py contains functionsf1(), f2() and f3(). Write 4 forms of import statements to use these functions in your program.

 [B] Attempt the following:

 	What is the difference between a module and a package?

 	What is the purpose behind creating multiple packages and modules?

 	By default, to which module do the statements in a program belong? How do we access the name of this module?

 	In the following statement what do a, b, c, x represent?
import a.b.c.x

 	If module m contains a function fun(), what is wrong with the following statements?
import m

fun()

 	What are the contents of PYTHONPATH variable? How can we access its contents programmatically?

 	What does the content of sys.path signify? What does the order of contents of sys.path signify?

 	Where a list of third-party packages is maintained?

 	Which tool is commonly used for installing third-party packages?

 	Do the following import statements serve the same purpose?
version 1

import a, b, c, d

version 2

import a

import b

import c

import d

version 3

from a import *

from b import *

from c import *

from d import *

 [C] State whether the following statements are True or False:

 	A function can belong to a module and the module can belong to a package.

 	A package can contain one or more modules in it.

 	Nested packages are allowed.

 	Contents of sys.path variable cannot be modified.

 	In the statement import a.b.c, c cannot be a function.

 	It is a good idea to use * to import all the funtions/classes defined in a module.

 16

 Namespaces

 	Symbol Table

 	Namespace

 	globals() and locals()

 	Where to use them?

 	Inner Functions

 	Scope and LEGB Rule

 	Programs

 	Exercise

 KanNotes

 Symbol Table

 	While interpreting our program Python interpreter creates a symbol table.

 	Symbol table consists of relevant information about each identifier (also called name or variable) used in our program. This includes the type of the identifier, its scope level and its location.

 	Symbol table is referred by the interpreter to decide whether the operations performed by our program on the identifiers should be permitted or not.

 	For example, suppose we have an identifier whose type has been marked as tuple in the symbol table. Later in the program if we try to modify its contents, interpreter will report an error as a tuple is immutable.

 Namespace

 	As the name suggests, a namespace is a space that holds names (identifiers).

 	Programmatically, a namespace is a dictionary of identifiers (keys) and their corresponding objects (values).

 	An identifier used in a function or a method belongs to the local namespace.

 	An identifier used outside a function or a method belongs to the global namespace.

 	If a local and a global identifier have the same name, the local identifier shadows out the global identifier.

 	Python assumes that an identifier that is assigned a value in a function/method is a local identifier.

 	If we wish to assign a value to a global identifier within a function/method, we should explicitly declare the variable as global using the global keyword.
def fun():

name conflict. local a shadows out global a

a = 45

name conflict, use global b

global b

b = 6.28

uses local a, global b and s

no need to define s as global, since it is not being changed

print(a, b, s)

global identifiers

a = 20

b = 3.14

s = ‘Aabra Ka Daabra’

fun()

print(a, b, s) # b has changed, a and s are unchanged

 globals() and locals()

 	Dictionary of identifiers in global and local namespaces can be obtained using built-in functions globals() and locals().

 	If locals() is called from within a function/method, it returns a dictionary of identifiers that are accessible from that function/method.

 	If globals() is called from within a function/method, it returns a dictionary of global identifiers that can be accessed from that function/method.

 	Following program illustrates the usage of globals() and locals():
def fun():

a = 45

global b

b = 6.28

print(locals())

print(globals())

a = 20

b = 3.14

s = ‘Aabra Ka Daabra’

print(locals())

print(globals())

fun()

On execution of this program, we get the following output:

{‘a’: 20, ‘b‘: 6.28, ‘s’: ‘Aabra Ka Daabra’}

{‘a’: 20, ‘b’: 6.28, ‘s’: ‘Aabra Ka Daabra’}

{‘a’: 45}

{‘a’: 20, ‘b’: 6.28, ‘s’: ‘Aabra Ka Daabra’}

The first, second and last line above shows abridged output. At global scope locals() and globals() return the same dictionary of global namespace.

Inside fun() locals() returns the local namespace, whereas globals() returns global namespace as seen from the output above.

 Where to use them?

 	Apart from finding out what all is available in the local and global namespace, globals() and locals() can be used to access variables using strings. This is shown in the following program:
a = 20

b = 3.14

s = ‘Aabra Ka Daabra’

lst = [‘a’, ‘b’, ‘s’]

for var in lst:

print(globals()[var])

On execution it produces the following output:

20

3.14

Aabra Ka Daabra

globals()[var] gives the current value of var in global namespace.

 	Using the same technique we can call different functions through the same variable as shown below:
def fun1():

print(‘Inside fun1’)

def fun2():

print(‘Inside fun2’)

def fun3():

print(‘Inside fun3’)

lst = [‘fun1’, ‘fun2’, ‘fun3’]

for var in lst:

globals()[var]()

On execution it produces the following output:

Inside fun1

Inside fun2

Inside fun3

 Inner Functions

 	An inner function is simply a function that is defined inside another function. Following program shows how to do this:
outer function

def display():

a = 500

print (‘Saving is the best thing…’)

inner function

def show():

print (‘Especially when your parents have done it for you!’)

print(a)

show()

display()

On executing this program, we get the following output:

Saving is the best thing…

Especially when your parents have done it for you!

500

 	show() being the inner function defined inside display(), it can be called only from within display(). In that sense, show() has been encapsulated inside display().

 	The inner function has access to variables of the enclosing function, but it cannot change the value of the variable. Had we donea = 600 in show(), a new local a would have been created and set, and not the one belonging to display().

 Scope and LEGB Rule

 	Scope of an identifier indicates where it is available for use.

 	Scope can be Local (L), Enclosing (E), Global (G), Built-in (B). Scope becomes more and more liberal from Local to Buil-in. This can be best understood though the program given below.
def fun1():

y = 20

print(x, y)

print(len(str(x)))

def fun2():

z = 30

print(x, y, z)

print(len(str(x)))

fun2()

x = 10

print(len(str(x)))

fun1()

Output of the program is given below:

2

10 20

2

10 20 30

2

 	len, str, print can be used anywhere in the program without importing any module. So they have a built-in scope.

 	Variable x is created outside all functions, so it has a global scope. It is available to fun1() as well as fun2().

 	fun2() is nested inside fun1(). So identifier y created in fun1() is available to fun2(). When we attempt to printy in fun2(), it is not found in fun2(), hence the search is continued in the enclosing function fun1(). Here it is found hence its value 20 gets printed. This is an example of enclosing scope.

 	Identifier z is local to fun2(). So it is available only to statements within fun2(). Thus it has a local scope.

 Programs

 Problem 16.1

 Write a program that nests function fun2() inside function fun1(). Create two variables by the name a in each function. Prove that they are two different variables.

 Program

 def fun1():

 a = 45

 print(a)

 print(id(a))

 def fun2():

 a = 90

 print(a)

 print(id(a))

 fun2()

 fun1()

 Output

 45

 11067296

 90

 11068736

 Tips

 	Function id() gives the address stored in a variable. Since the addresses in the output are different, it means that the two a’s are referring to two different values

 Problem 16.2

 Write a program that proves that the dictionary returned by globals() can be used to manipulate values of variables in it.

 Program

 a = 10

 b = 20

 c = 30

 globals()[‘a’] = 25

 globals()[‘b’] = 50

 globals()[‘c’] = 75

 print(a, b, c)

 Output

 25 50 75

 Tips

 	globals() returns a dictionary of identifiers and their values. From this dictionary specific identifier can be accessed using the identifier as the key.

 	From the output it is evident that we are able to manipulate variables a, b, c.

 Problem 16.3

 Write a program that proves that the dictionary returned by globals() can be used to manipulate values of variables in it.

 Program

 def fun():

 a = 10

 b = 20

 c = 30

 locals()[‘a’] = 25

 locals()[‘b’] = 50

 locals()[‘c’] = 75

 print(a, b, c)

 fun()

 Output

 10 20 30

 Tips

 	locals() returns a ‘copy’ of dictionary of identifiers that can be accessed from fun() and their values. From this dictionary specific identifier can be accessed using the identifier as the key.

 	From the output it is evident that though we do not get any error the manipulation of variables a, b, c does not become effective as we are manipulating the copy.

 Exercise

 [A] State whether the following statements are True or False:

 	Symbol table consists of information about each identifier used in our program.

 	An identifier with global scope can be used anywhere in the program.

 	It is possible to define a function within another function.

 	If a function is nested inside another function then variables defined in outer function are available to inner function.

 	If nested functions create two variables with same name, then the two variables are treated as same variable.

 	An inner function can be called from outside the outer function.

 	If a function creates a variable by the same name as the one that exists in global scope the function’s variable will shadow out the global variable.

 	Variables defined at global scope are available to all the functions defined in the program.

 [B] Answer the following:

 	What is the difference between the function locals() and globals()?

 	Would the output of the following print statements be same or different?
a = 20

b = 40

print(globals())

print(locals())

 	Which different scopes can an identifier have?

 	Which is the most liberal scope that an identifier can have?

 17

 Classes and Objects

 	Programming Paradigms

 	What are Classes and Objects?

 	Public and Private Members

 	Class Declaration and Object Creation

 	Object Initialization

 	Class Variables and Methods

 	vars() and dir() Functions

 	vars() and dir() with Classes and Objects

 	Programs

 	Exercise

 KanNotes

 Programming Paradigms

 	Paradigm means the principle according to which a program is organized to carry out a given task.

 	Python supports all three programming paradigms—Structured programming, Functional Programming and Object-oriented programming paradigm (OOP).

 	OOP encourages creation and interaction of objects.

 What are Classes and Objects?

 	A class contains data and methods that can access or manipulate this data. Thus a class lets us bundle data and functionality together.

 	A class is generic in nature, whereas an object is specific in nature.

 	Examples of classes and objects:
Bird is a class. Sparrow, Crow, Eagle are objects of Bird class.

Player is a class. Sachin, Rahul, Kapil are objects of Player class.

Flower is a class. Rose, Lily, Gerbera are objects of Flower class.

Instrument is a class. Sitar, Flute are objects of Instrument class.

 	Programmatic examples of classes and objects:

	i = 10

	# i is an object of int class

	a = 3.14

	# a is an object of float class

	s = ‘Sudesh’

	# s is an object of str class

	lst = [10, 20, 30]

	# lst is an object of list class

	tpl = (‘a’, ‘b’, ‘c’)

	# tpl is an object of tuple class

int, float, str, list, tuple are ready-made classes.

 	An object typically contains data and methods that let us access or manipulate the data. Different objects of a particular type may contain different data, but same methods.
s1 = ‘Rupesh’

s2 = ‘Geeta’

s1 and s2 both are string objects containing different data, but same methods like upper(), lower(), capitalize(), etc.

 	The specific data in an object is often called instance data or state of the object or attributes of the object. Methods in an object are called instance methods.

 	Apart from using Python library’s ready-made classes, we can also create our own classes. These are often called user-defined data types.

 	A user-defined class Employee may contain instance data like name, age, salary and instance methods like print_data() and set_data() to access and manipulate the data.

 	Objects created from Employee class will have specific values for data. Hence, each object is a specific instance of a class. Creation of an object is often called instantiation.

 Public and Private Members

 	Members of a class (data and methods) are accessible from outside the class.

 	It is a good idea to keep data in a class inaccessible from outside the class and access it through member functions of the class.

 	Private members by convention start with an underscore, as in _name, _age, _salary.

 Class Declaration and Object Creation

 class Employee:

 def set_data(self, n, a, s):

 self._name = n

 self._age = a

 self._salary = s

 def display_data(self):

 print(self._name, self._age, self._salary)

 e1 = Employee()

 e1.set_data(‘Ramesh’, 23, 25000)

 e1.display_data()

 e2 = Employee()

 e2.set_data(‘Suresh’, 25, 30000)

 e2.display_data()

 	Here we have defined an Employee class with 3 private data members _name, _age, _salary and two public methods set_data() and display_data().

 	e1 = Employee() creates a nameless object and stores its address in e1.

 	Methods of a class can be called using the syntax object.method().

 	Whenever we call a method using an object, address of the object gets passed to the method implicitly. This address is collected by the method in a variable called self.

 	self is like this pointer of C++ or this reference of Java. In place of self any other variable name can be used.

 	e1.set_data(‘Ramesh’, 23, 25000) calls the method set_data(). First parameter passed to this method is the address of object, followed by name, age and salary.

 	When set_data() is called using e1, self contains the address of first object. Likewise, when set_data() is called using e2, self contains address of the second object.

 	Data in class Employee, i.e. _name, _age, _salary is called instance data or attributes, whereas methods set_data() and display_data() are called instance methods.

 	In principle, every object has instance data and instance methods.

 	In practice, each object has instance data, whereas methods are shared amongst objects.

 	Sharing is justified, as methods are going to remain same for all the objects.

 Object Initialization

 class Employee:

 def set_data(self, n, a, s):

 self._name = n

 self._age = a

 self._salary = s

 def display_data(self):

 print(self._name, self._age, self._salary)

 def_______init_______(self, n = ‘’, a = 0, s = 0.0):

 self._name = n

 self._age = a

 self._salary = s

 def _______del_______(self):

 print(‘Deleting object’ + str(self))

 e1 = Employee(‘Ramesh’, 23, 25000)

 e1.display_data()

 e2 = Employee()

 e2.set_data(‘Suresh’, 25, 30000)

 e2.display_data()

 On execution of this program, we get the following output:

 Ramesh 23 25000

 Suresh 25 30000

 Deleting object<_______main_______.Employee object at 0x013F6810>

 Deleting object<_______main_______.Employee object at 0x013F65B0>

 	There are two ways to initialize an object:
Method 1: Using methods like get_data() / set_data()

Benefit - Data is protected from manipulation from outside the class.

Method 2: Using special member function_______ init_______()

Benefit - Guaranteed initialization, as_______ init_______() is always called when an object is created.

 	_______ init () is similar to constructor function of C++ / Java.

 	When an object is created, space is allocated in memory and _______ init_______() is called. So address of object is passed to_______ init_______().

 	_______ init () doesn’t return any value.

 	_______ init () is called only once during entire lifetime of an object.

 	If we do not define init (), then Python provides a default _______ init_______() method.

 	A class may have init () as well as set_data().
_______ init_______() - To initialize object

set_data() - To modify object

 	_______ init () ‘s parameters can take default values. In our program they get used while creating object e2.

 	_______ del_______ () method gets called automatically when an object goes out of scope. Cleanup activity, if any, should be done in del ().

 	_______ del () is similar to destructor function of C++.

 Class Variables and Methods

 	If we wish to share a variable amongst all objects of a class, we must declare the variable as a class variable or a class attribute.

 	To declare a class variable, we have to create a variable without prepending it with self.

 	Class variables do not become part of objects of a class.

 	Class variables are accessed using the syntax classname.varname.

 	Contrasted with instance methods, class methods are methods that do not receive a self argument.

 	Class methods can be accessed using the syntax classname.methodname().

 	Class variables can be used to count how many objects have been created from a class.

 	Class variables and methods are like static members in C++ / Java.

 vars() and dir() Functions

 	There are two useful global functions vars() and dir(). Of these, vars() returns a dictionary of attributes and their values, whereas dir() returns a list of attributes. They can be used in this form:
vars()

vars(module/class/object)

dir()

dir(module/class/object)

 	Given below is the sample usage of these functions:
import math

import functions

a = 125

s = ‘Spooked’

	# prints dict of names in the current module including a and s

	print(vars())

	print(vars(math))

	# prints dict of names in math module

	print(vars(functions))

	# prints dict of names in functions module

	# prints list of attributes in current module including a and s

	print(dir())

	print(dir(math))

	# prints list of attributes in math module

	print(dir(functions))

	# prints list of attributes in functions module

 vars() and dir() with Classes and Objects

 	Both the functions can be used with a class as well as an object as shown in the following program.
class Fruit:

count = 0

def_______init_______(self, name = ‘’, size = 0, color = ‘’):

self._name = name

self._size = size

self._color = color

Fruit.count += 1

def display():

print(Fruit.count)

f1 = Fruit(‘Banana’, 5, ‘Yellow’)

print(vars(Fruit))

print(dir(Fruit))

print(vars(f1))

print(dir(f1))

On execution of this program, we get the following output:

{……….., ‘count’: 0, ‘_______init_______’: <function Fruit. _______init_______>, ‘display’: <function Fruit.display at 0x7f290a00f598>,…………… }

[……….. ‘_______init_______’, ‘count’, ‘display’]

{‘_name’: ‘Banana’, ‘_size’: 5, ‘_color’: ‘Yellow’}

[……….. ‘_______init_______’, ‘_color’, ‘_name’, ‘_size’, ‘count’, ‘display’]

 	When used with class, vars() returns a dictionary of the class’s attributes and their values. On the other hand the dir() function merely returns a list of its attributes.

 	When used with object, vars() returns a dictionary of the object’s attributes and their values. In addition, it also returns the object’s class’s attributes, and recursively the attributes of its class’s base classes.

 	When used with object, dir() returns a list of the object’s attributes, object’s class’s attributes, and recursively the attributes of its class’s base classes.

 Programs

 Problem 17.1

 Write a class called Number which maintains an integer. It should have following methods in it to perform various operations on the int:

 	
 set_number(self, n)

 	
 # sets n into int

 	
 get_number(self)

 	
 # return current value of int

 	
 print_number(self)

 	
 # prints the int

 	
 isnegative(self)

 	
 # checks whether int is negative

 	
 isdivisibleby(self, n)

 	
 # checks whether int is divisible by n

 	
 absolute_value(self)

 	
 # returns absolute value of int

 Program

 class Number:

 def set_number(self, n):

 self._num = n

 def get_number(self):

 return self._num

 def print_number(self):

 print(self._num)

 def isnegative(self):

 if self._num < 0:

 return True

 else:

 return False;

 def isdivisibleby(self, n):

 if n == 0:

 return False

 if self._num % n == 0:

 return True

 else:

 return False

 def absolute_value(self):

 if self._num >= 0:

 return self._num

 else:

 return -1 * self._num

 x = Number()

 x.set_number(-1234)

 x.print_number();

 if x.isdivisibleby(5) == True:

 print(“5 divides”, x.get_number())

 else:

 print(“5 does not divide”, x.get_number())

 print(“Absolute Value of”, x.get_number(), “is”, x.absolute_value())

 Problem 17.2

 Write a program to create a class called Fruit with attributes size and color. Create multiple objects of this class. Report how many objects have been created from the class.

 Program

 class Fruit:

 count = 0

 def_______init_______(self, name = ‘’, size = 0, color = ‘’):

 self._name = name

 self._size = size

 self._color = color

 Fruit.count += 1

 def display():

 print(Fruit.count)

 f1 = Fruit(‘Banana’, 5, ‘Yellow’)

 f2 = Fruit(‘Orange’, 4, ‘Orange’)

 f3 = Fruit(‘Apple’, 3, ‘Red’)

 Fruit.display()

 print(Fruit.count)

 Output

 3

 3

 Tips

 	count is a class attribute, not an object attribute. So it is shared amongst all Fruit objects.

 	It can be initialized as count = 0, but must be accessed using Fruit.count.

 Problem 17.3

 Write a program that determines whether two objects are of same type, whether their attributes are same and whether they are pointing to same object.

 Program

 class Complex:

 def_______init_______(self, r = 0.0, i = 0.0):

 self._real = r

 self._imag = i

 def_______eq_______(self, other):

 if self._real == other._______real and self._imag == other._______ imag:

 return True

 else:

 return False

 c1 = Complex(1.1, 0.2)

 c2 = Complex(2.1, 0.4)

 c3 = c1

 if c1 == c2:

 print(‘Attributes of c1 and c2 are same’)

 else:

 print(‘Attributes of c1 and c2 are different’)

 if type(c1) == type(c3):

 print(‘c1 and c3 are of same type’)

 else:

 print(‘c1 and c3 are of different type’)

 if c1 is c3:

 print(‘c1 and c3 are pointing to same object’)

 else:

 print(‘c1 and c3 are pointing to different objects’)

 Output

 Attributes of c1 and c2 are different

 c1 and c3 are of same type

 c1 and c3 are pointing to same object

 Tips

 	To compare attributes of two Complex objects we have overloaded the == operator, by defining the function eq (). Operator overloading is explained in detail in Chapter 18.

 	type() i s used to obtain the type of an object. Types can be compared using the == operator.

 	is keyword is used to check whether c1 and c3 are pointing to the same object.

 Problem 17.4

 Write a program to get a list of built-in functions.

 Program

 import builtins

 print(dir(builtins))

 print()

 print(vars(builtins))

 Output

 [‘ArithmeticError’, ‘AssertionError’, ‘AttributeError’, …

 ‘_______debug_______’, ‘_______doc_______’, ‘_______import_______ ‘, ‘_______loader_______’, ‘_______name_______’, … ‘abs’, ‘all’, ‘any’, ‘ascii’, ‘bin’, ‘bool’, ‘bytearray’, ‘bytes’, ‘callable’, ‘chr’, … ‘sum’, ‘super’, ‘tuple’, ‘type’, ‘vars’, ‘zip’]

 {‘_______name_______’: ‘builtins’, ‘_______package_______’: ‘’, ‘ _______loader_______’: <class ‘_frozen_importlib.BuiltinImporter’>, ‘abs’: <built-in function abs>, ‘all’: <built-in function all>, ‘any’: <built-in function any>, … ‘False’: False}

 Tips

 	In the output above only partial items of dictionary and list is being displayed. The actual output is much more exhaustive.

 Problem 17.5

 Suppose we have defined two functions msg1() andmsg2() in main module. What will be the output of vars() and dir() on the current module? How will you obtain the list of names which are present in both outputs, those which are unique to either list?

 Program

 def msg1():

 print(‘Wright Brothers are responsible for 9/11 too’)

 def msg2():

 print(‘Cells divide to multiply’)

 d = vars()

 l = dir()

 print(sorted(d.keys()))

 print(l)

 print(d.keys() - l)

 print(l - d.keys())

 Output

 [‘_______annotations_______’, ‘_______builtins_______’, ‘_______ cached_______’, ‘_______doc_______’, ‘_______file_______’, ‘_______loader_______’, ‘_______name_______’, ‘_______package _______’, ‘_______spec_______’, ‘d’, ‘l’, ‘msg1’, ‘msg2’]

 [’_______annotations_______’, ‘_______builtins_______’, ‘_______ cached_______’, ‘_______doc_______’, ‘_______file_______’, ‘_______loader_______’, ‘_______name_______’, ‘_______package _______’, ‘_______spec_______’, ‘d’, ‘msg1’, ‘msg2’]

 {‘l’}

 set()

 Tips

 	set() shown in the output means an empty set. It means there is nothing in l that is not present in d.

 Problem 17.6

 Is there any difference in the values returned by the functions dir() and vars(..).keys()? If yes, write a program to obtain that difference?

 Program

 s = set(dir(list)).difference(vars(list).keys())

 print(s)

 Output

 {‘_______class_______’, ‘_______setattr_______’, ‘_______format_______’, ‘_______init_subclass_______’, ‘_______subclasshook _______’, ‘_______delattr_______’, ‘_______dir_______’, ‘_______ reduce_______’, ‘ reduce_ex ‘, ‘ str ‘}

 Tips

 	dir(list) will return a list of attributes of list type.

 	vars(list).keys() returns a list of keys from the dictionary returned by vars() for the list type.

 	differernce() returns the difference between the two lists.

 Exercise

 [A] State whether the following statements are True or False:

 	Class attributes and object attributes are same.

 	A class data member is useful when all objects of the same class must share a common item of information.

 	If a class has a data member and three objects are created from this class, then each object would have its own data member.

 	A class can have class data as well as class methods.

 	Usually data in a class is kept private and the data is accessed / manipulated through public member functions of the class.

 	Member functions of a class have to be called explicitly, whereas, the constructor gets called automatically.

 	A constructor gets called whenever an object gets instantiated.

 	A constructor never returns a value.

 	When an object goes out of scope, its destructor gets called automatically.

 	The self variable always contains the address of the object using which the method/data is being accessed.

 	The self variable can be used even outside the class.

 	A constructor gets called only once during the lifetime of an object.

 	By default, instance data and methods in a class are public.

 	In a class 2 constructors can coexist—a 0-argument constructor and a 2-argument constructor.

 [B] Answer the following:

 	Which methods in a class act as constructor?

 	How many object are created in the following code snippet?
a = 10;

b = a;

c = b

 	What is the difference between variables, age and _age?

 	What is the difference between the function vars() and dir()?

 	What is the purpose of built-in functions dir(), vars(), global() and local()?

 	What will be the output of the following program?
var = 1.1

print(var)

def fun():

var = 2.2

print(var)

fun()

print(var)

 [C] Attempt the following:

 	Write a program to create a class that represents Complex numbers containing real and imaginary parts and then use it to perform complex number addition, subtraction, multiplication and division.

 	Write a program that implements a Matrix class and performs addition, multiplication, and transpose operations on 3 x 3 matrices.

 	Write a program to create a class that can calculate the surface area and volume of a solid. The class should also have a provision to accept the data relevant to the solid.

 	Write a program to create a class that can calculate the perimeter / circumference and area of a regular shape. The class should also have a provision to accept the data relevant to the shape.

 	Write a program that creates and uses a Time class to perform various time arithmetic operations.

 	Write a program to implement a linked list data structure by creating a linked list class. Each node in the linked list should contain name of the car, its price and a link to the next node.

 [D] Match the following:

 	
 a. dir()

 	
 1. Nested packages

 	
 b. vars()

 	
 2. Identifiers, their type and scope

 	
 c. Variables in a function

 	
 3. Returns dictionary

 	
 d. import a.b.c

 	
 4. Local namespace

 	
 e. Symbol table

 	
 5. Returns list

 	
 f. Variables outside all functions

 	
 6. Global namespace

 18

 Intricacies of Classes & Objects

 	Identifier Naming Convention

 	Calling Functions and Methods

 	Operator Overloading

 	Which Operators to Overload?

 	Everything is an Object

 	Imitating a Structure

 	Type Conversion

 	Programs

 	Exercise

 KanNotes

 Identifier Naming Convention

 	We have created identifiers for many things—normal variables, functions, classes, instance data, instance methods, class data and class methods.

 	It is a good idea to follow the following convention while creating identifiers:

	Class names - Start with an uppercase letter.
Ex.: Employee, Fruit, Bird, Complex, Tool, Machine

	All other identifiers - Start with a lowercase letter.
Ex. real, imag, name, age, salary, printit(), display()

	Private identifiers - Start with a single leading underscore.
Ex. _name, _age, _set_data(), _get_errors()

Unlike C++ and Java, Python does not have keywords private or public to mark the attributes as private/public. So by convention an attribute/method beginning with an underscore indicates that you shouldn’t access it from outside the class.

	Strongly private identifier - Start with two leading underscores (often called dunderscore, short for double underscore).
Ex._______set_data(),_______get_data()

Such names have relevance in a OO concept called Inheritance (discussed in Chapter 19). When you create a method starting with_______you’re saying that you don’t want anybody to override it; it will be accessible just from inside its own class.

	Language-defined special names - Start and end with two. Ex. init (), del (), add (), sub ()
Don’t call these methods. They are the methods that Python calls.

	Keywords - Do not use them as identifier names.

 Calling Functions and Methods

 	Consider the program given below. It contains a global function printit() which does not belong to any class, an instance method called display() and a class method called show().

	def printit():

	# global function

	print(‘Opener’)

	class Message:

	def display(self, msg):

	# instance method

	printit()

	print(msg)

	def show():

	# class method

	printit()

	print(‘Hello’)

	# display() # this call will result in an error

	printit()

	# call global function

	m = Message()

	m.display(‘Good Morning’)

	# call instance method

	Message.show()

	# call class method

On execution of this program, we get the following output:

Opener

Opener

Good Morning

Opener

Hello

 	Class method show() does not receiveself, whereas instance method display() does.

 	A global function printit() can call a class method show() and instance method display().

 	A class method and instance method can call a global function printit().

 	A class method show() cannot call an instance method display() since show() doesn’t receive a self argument. In absence of this argument display() will not know which object is it supposed to work with.

 	A class method and instance method can also be called from a method of another class. The syntax for doing so remains same:
m2 = Message()

m2.display(‘Good Afternoon’)

Message.show(‘Hi’)

 Operator Overloading

 	Since Complex is a user-defined class, Python doesn’t know how to add objects of this class. We can teach it how to do it, by overloading the + operator as shown below.
class Complex:

def_______init_______(self, r = 0.0, i = 0.0):

self._real = r

self._imag = i

def_______add_______(self, other):

z = Complex()

z._real = self._real + other._real

z._imag = self._imag + other._imag

return z

def_______sub_______(self, other):

z = Complex()

z._real = self._real - other._real

z._imag = self._imag - other._imag

return z

def display(self):

print(self._real, self._imag)

c1 = Complex(1.1, 0.2)

c2 = Complex(1.1, 0.2)

c3 = c1 + c2

c3.display()

c4 = c1 - c2

c4.display()

 	To overload the + operator we need to defineadd () function within the Complex class.

 	Likewise, to overload the - operator we need to define sub () function for carrying out subtraction of two Complex objects.

 	In the expression c3 = c1 + c2, c1 becomes available in self, whereas, c2 is collected in other.

 Which Operators to Overload?

 	Given below is the list of operators that we can overload and their function equivalents that we need to define.

	# Arithmetic operators

	+

	_______add_______(self, other)

	-

	_______sub_______ (self, other)

	*

	_______mul_______ (self, other)

	/

	_______truediv_______(self, other)

	%

	_______mod_______(self, other)

	**

	_______pow_______(self, other)

	//

	_______floordiv_______(self, other)

	# Comparison operators

	<

	_______lt_______(self, other)

	>

	_______gt_______ (self, other)

	<=

	_______le_______(self, other)

	>=

	_______ge_______(self, other)

	==

	_______eq_______(self, other)

	!=

	_______ne_______(self, other)

	# Compound Assignment operators

	=

	_______isub_______(self, other)

	+=

	_______iadd_______(self, other)

	*=

	_______imul_______(self, other)

	/=

	_______idiv_______(self, other)

	//=

	_______ifloordiv_______(self, other)

	%=

	_______imod_______(self, other)

	**=

	_______ipow_______(self, other)

 	Unlike many other languages like C++, Java, etc., Python does not support function overloading. It means function names in a program, or method names within a class must be unique.

 Everything is an Object

 	In python every entity is an object. This includes int, float, bool, complex, string, list, tuple, set, dictionary, function, class, method and module.

 	When we say x = 20, a nameless object of type int is created containing a value 20 and address (location in memory) of the object is stored in x. x is called a reference to the int object.

 	Same object can have multiple references.

	i = 20

	j = i

	# another reference for same int object referred to by i

	k = i

	# yet another reference for same object

	k = 30

	print (k)

	# will print 30, as k now points to a new int object

	print (i, j)

	# will print 20 20 as i, j continue to refer to old object

 	x and y are referring to same object. Changing one doesn’t change the other. Same behavior is shown for float and bool types.
x = 20

y = 20

 	x and y are referring to different objects. Same behavior is shown for list, tuple, set, dictionary, etc.
x = Sample(10, 20)

y = Sample(10, 20)

 	Some objects are mutable, some are not. Also, all objects have some attributes and methods.

 	The type() function returns type of the object, whereas id() function returns location of the object in memory.

 import math

 class Message:

 def display(self, msg):

 print(msg)

 def fun():

 print(‘Everything is an object’)

 i = 45

 a = 3.14

 c = 3 + 2j

 city = ‘Nagpur’

 lst = [10, 20, 30]

 tup = (10, 20, 30, 40)

 s = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}

 d = {‘Ajay’: 30, ‘Vijay’: 35, ‘Sujay’: 36}

 print(type(i), id(i))

 print(type(a), id(a))

 print(type(c), id(c))

 print(type(city), id(city))

 print(type(lst), id(lst))

 print(type(tup), id(tup))

 print(type(s), id(s))

 print(type(d), id(d))

 print(type(fun), id(fun))

 print(type(Message), id(Message))

 print(type(math), id(math))

 On execution of this program we get the following output:

 <class ‘int’> 495245808

 <class ‘float’> 25154336

 <class ‘complex’> 25083752

 <class ‘str’> 25343392

 <class ‘list’> 25360544

 <class ‘tuple’> 25317808

 <class ‘set’> 20645208

 <class ‘dict’> 4969744

 <class ‘function’> 3224536

 <class ‘type’> 25347040

 <class ‘module’> 25352448

 Imitating a Structure

 	In C if we wish to keep dissimilar but related data together we create a structure do so.

 	In Python too, we can do this by creating a class that is merely a collection of attributes (and not methods).

 	Moreover, unlike C++ and Java, Python permits us to add/delete/ modify these attributes to a class/object dynamically.

 	In the following program we have added 4 attributes, modified two attributes and deleted one attribute, all on the fly, i.e. after creation of Bird object.

 class Bird:

 pass

 b = Bird()

 # create attributes dynamically

 b.name = ‘Sparrow’

 b.weight = 500

 b.color = ‘light brown’

 b.animaltype = ‘Vertebrate’

 # modify attributes

 b.weight = 450

 b.color = ‘brown’

 # delete attributes

 del b.animaltype

 Type Conversion

 	There are two types of conversions that we may wish to perform. These are:

	Conversion between different built-in types

	Conversion between built-in and user-defined types

 	Conversions between different built-in types:

	i = 125

	a = float(i)

	# int to float conversion

	b = 3.14

	j = int(b)

	# float to int conversion k = 455

	l = str(i)

	# float to string conversion

	lst = [10, 20, 10, 40, 10]

	tpl = tuple(lst)

	# list to tuple conversion

	s = set(lst)

	# list to set conversion

 	Conversion between built-in and user-defined types:
Following program illustrates how a user-definedString type can be converted to built-in type int._______int_______() has been overloaded to carry out conversion from str to int.

class String:

def_______init_______(self, s = ‘’):

self._str = s

def display(self):

print(self._str)

def _______int_______(self):

return int(self._str)

s1 = String(123) # conversion from int to String

s1.display()

i = int(s1) # conversion from string to int

print(i)

 Programs

 Problem 18.1

 Write a Python program that displays the attributes of integer, float and function objects. Also show how these attributes can be used.

 Program

 def fun():

 print(‘Everything is an object’)

 print(dir(55))

 print(dir(-5.67))

 print(dir(fun))

 print((5)._______add _______(6))

 print((-5.67)._______abs_______())

 d = globals()

 d[‘fun’]._______call_______() # calls fun()

 Output

 [‘_______abs_______’, ‘_______add_______’, ‘_______and_______’, ‘ _______bool_______’, ‘_______ceil_______’, …]

 [‘_______abs_______’, ‘_______add_______’, ‘_______bool_______’, ‘_______class_______’, ‘_______delattr_______’, …]

 [‘_______annotations_______’, ‘_______call_______’, ‘_______class _______’, ‘_______closure_______’, …] 11

 5.67

 Everything is an object

 Tips

 	Output shows incomplete list of attributes of int, float and function objects.

 	From this list we have used the attributes_______add_______ () to add two integers,_______abs_______ () to get absolute value of float and_______ call_______ () to call the function fun().

 	globals() return a dictionary representing the current global symbol table. From this dictionary we have picked the object representing thefun function and used it to call_______call_______ (). This results into call to fun().

 Problem 18.2

 Create a class Weather that has a list containing weather parameters. Define an overloaded in operator that checks whether an item is present in the list.

 Program

 class Date:

 def_______init_______(self, d, m, y):

 self._day = d

 self._mth = m

 self._yr = y

 def_______eq_______(self, other):

 if self._day == other._day and self._mth == other._mth and self._yr == other._yr:

 return True

 else:

 return False

 d1 = Date(17, 11, 98)

 d2 = Date(17, 11, 98)

 d3 = Date(19, 10, 92)

 print(id(d1))

 print(id(d2))

 print(d1 == d3)

 Output

 44586224

 44586256

 False

 Tips

 	ids of the two objects referred by d1 and d2 are different. This means that they are referring to two different objects.

 	To overload the == operator in the Date class, we need to define the function eq ().

 Problem 18.3

 Create a class Weather that has a list containing weather parameters. Define an overloaded in operator that checks whether an item is present in the list.

 Program

 class Weather:

 def_______init_______(self):

 self._params = [‘Temp’, ‘Rel Hum’, ‘Cloud Cover’, ‘Wind Vel’]

 def _______contains_______(self, p):

 return True if p in self._params else False

 w = Weather()

 if ‘Rel Hum’ in w:

 print(‘Valid weather parameter’)

 else:

 print(‘Invalid weather parameter’)

 Output

 Valid weather parameter

 Tips

 	To overload the in operator we need to define the function _______ contains_______().

 Exercise

 [A] State whether the following statements are True or False:

 	A global function can call a class method as well as an instance method.

 	In Python a function, class, method and module are treated as objects.

 	Given an object, it is possible to determine its type and address.

 	It is possible to delete attributes of an object during execution of the program.

 [B] Answer the following:

 	Which functions should be defined to overload the +, -, / and // operators?

 	How many objects are created by lst = [10, 10, 10, 30]?

 	How will you define a structure Employee containing the attributes Name, Age, Salary, Address, Hobbies dynamically?

 [C] Match the following:

 	
 a. Cannot use as identifier name

 	
 1. class name

 	
 b. basic_salary

 	
 2. class variable

 	
 c. CellPhone

 	
 3. keyword

 	
 d. count

 	
 4. local variable in a function

 	
 e. self

 	
 5. private variable

 	
 f. _fuel_used

 	
 6. strongly private identifier

 	
 g. ____ draw()

 	
 7. method that Python calls

 	
 h. ____ iter____()

 	
 8. meaningful only in instance func.

 19

 Containership and Inheritance

 	Reuse Mechanisms

 	Which to use When?

 	Containership

 	Inheritance

 	What is Accessible where?

 	isinstance() and issubclass()

 	The object class

 	Features of Inheritance

 	Types of Inheritance

 	Diamond Problem

 	Abstract Classes

 	Runtime Polymorphism

 	Programs

 	Exercise

 KanNotes

 Reuse Mechanisms

 	Instead of reinventing the same code that is already available, it makes sense in reusing existing code.

 	Python permits two code reuse mechanisms:

	Containership (also called composition)

	Inheritance

 	In both mechanisms we can reuse existing classes and create new enhanced classes based on them.

 	We can reuse existing classes even if their source code is not available.

 Which to use When?

 	Containership should be used when the two classes have a ‘has a’ relationship. For example, a College has Professors. SoCollege class’s object can contain one or more Professor class’s object(s).

 	Inheritance should be used when the two classes have a ‘like a’ relationship. For example, a Button is like a Window. So Button class can inherit features of an existing class called Window.

 Containership

 	Containership is also known as composition. A container can contain one or more contained objects apart from other data.
class Department:

def set_department(self):

self._id = input(‘Enter department id:’)

self._name = input(‘Enter department name:’)

def display_department(self):

print(‘Department ID is: ‘, self._id)

print(‘Department Name is: ‘, self._name)

class Employee:

def set_employee(self):

self._eid = input(‘Enter employee id:’)

self._ename = input(‘Enter employee name:’)

self._dobj = Department()

self._dobj.set_department()

def display_employee(self):

print(‘Employee ID: ‘, self._eid)

print(‘Employee Name: ‘, self._ename)

self._dobj.display_department()

obj = Employee()

obj.set_employee()

obj.display_employee()

Given below is the sample interaction with this program:

Enter employee id: 101

Enter employee name: Ramesh

Enter department id: ME

Enter department name: Mechanical Engineering

Employee ID: 101

Employee Name: Ramesh

Department ID is: ME

Department Name is: Mechanical Engineering

 	In this program a Department object is contained in an Employee object.

 Inheritance

 	In Inheritance a new class called derived class
can be created to inherit features of an existing class called base class.

 	Base class is also called super class or parent class.

 	Derived class is also called sub class or child class.
base class

class Index:

def_______init_______(self):

self._count = 0

def display(self):

print(‘count = ‘ + str(self._count))

def incr(self):

self._count += 1

derived class

class NewIndex(Index):

def_______init_______(self):

super()._______init_______()

def decr(self):

self._count -= 1

i = NewIndex()

i.incr()

i.incr()

i.ncr()

i.display()

i.decr()

i.display()

i.decr()

i.display()

On execution of this program we get the following output:

count = 3

count = 2

count = 1

 	Here, Index is the base class and NewIndex is the derived class. Note the definition of NewIndex class. The mention ofIndex within parentheses indicates thatNewIndex is being inherited from Index class.

 	Construction of an object always proceeds from base towards derived.

 	So when we create the derived class object, base classinit_______ () followed by derived class init () gets called. The syntax used for calling base class constructor is super(). init ().

 	Derived class object contains all base class data. So _count is available in derived class.

 	When incr() is called using derived class object, first it is searched in derived class. Since it is not found here, the search is continued in the base class.

 What is Accessible where?

 	Derived class members can access base class members, vice versa is not true.

 	In C++ and Java there are private, protected and public keywords to control the access of base class members from derived class or from outside the class hierarchy. Python doesn’t have any such keywords.

 	Effect of private, protected and public is achieved by following a convention while creating variable names. This convention is shown below:
var - treat this as public variable

_var - treat this as protected variable

_______ var - treat this as private variable

Public variables may be accessed from anywhere.

Protected variables should be accessed only in class hierarchy.

Private variables should be used only in the class in which they are defined.

 	Not using _var outside the class hierarchy is only a convention. If you violate you won’t get errors, but it would be a bad practice to follow.

 	However, any attempt to use var either in the class hierarchy or outside the class would result in an error.
class Base:

def_______init_______(self):

self.i = 10

self._a = 3.14

self._______s = ‘Hello’

def display(self):

print (self.i, self._a, self._______s)

class Derived(Base):

def_______init_______(self):

super()._______init_______()

self.i = 100

self._a = 31.44

self._______s = ‘Good Morning’

self.j = 20

self._b = 6.28

self._______ss = ‘Hi’

def display(self):

super().display()

print (self.i, self._a, self._______s)

print (self.j, self._b, self. _______ss)

dobj = Derived()

dobj.display()

print(dobj.i)

print(dobj._a)

print(dobj._______s) # causes error

print(dobj.i)

print(dobj._a)

print(dobj._______s) # causes error

On executing this program, we get the following output:

100

31.44

Hello

100

31.44

Good Morning 20

6.28

Hi

100

31.44

100

31.44

 	In reality all _______ var type of variables get name mangled. i.e. in Base class _______s becomes _base_______s. Likewise, in Derived class _______s becomes _Derived_______s and_______ss becomes _Derived_______ss.

 	When in Derived class’s Display() method we attempt to use _______ s, it is not the data member of Base class, but a new data member of Derived class that is being used.

 isinstance() and issubclass()

 	isinstance() and issubclass() are global functions.

 	isinstance(o, c) is used to check whether an object o is an instance of a class c.

 	issubclass(d, b) is used to check whether class d has been derived from class b.

 The object class

 	All classes in Python are derived from a ready-made base class called object. So methods of this class are available in all classes.

 	You can get a list of these methods using:

	print(dir(object))

	print(dir(Index))

	# Index is derived from Object

	print(dir(NewIndex))

	# NewIndex is derived from Index

 Features of Inheritance

 	Inheritance facilitates three things:

	Inheritance of existing feature: To implement this just establish inheritance relationship.

	Suppressing an existing feature: To implement hide base class implementation by defining same method in derived class.

	Extending an existing feature: To implement call base class method from derived class by using one of the following two forms:
super().base_class_method()

Baseclassname.base_class_method(self);

 Types of Inheritance

 	There are 3 types of inheritance:

	Simple Inheritance - Ex. class NewIndex derived from class Index

	Multi-level Inheritance - Ex. class HOD is derived from class Professor which is derived from class Person.

	Multiple Inheritance - Ex. class HardwareSales derived from two base classes—Product and Sales.

 	In multiple inheritance, a class is derived from 2 or more than 2 base classes.
class Product:

def_______init_______(self):

self.title = input (‘Enter title:’)

self.price = input (‘Enter price:’)

def display_data(self):

print(self.title, self.price)

class Sales:

def_______init_______(self):

self.sales_figures = [int(x) for x in input(‘Enter sales fig:’).split()]

def display_data(self):

print(self.sales_figures)

class HardwareItem(Product, Sales):

def_______init_______(self):

Product._______init_______(self)

Sales._______init_______(self)

self.category = input (‘Enter category:’)

self.oem = input (‘Enter oem:’)

def display_data(self):

Product.display_data(self)

Sales.display_data(self)

print(self.category, self.oem)

hw1 = HardwareItem()

hw1.display_data()

hw2 = HardwareItem()

hw2.display_data()

Given below is the sample interaction with this program:

Enter title: Bolt

Enter price: 12

Enter sales fig: 120 300 433

Enter category: C

Enter oem: Axis Mfg

Bolt 12

[120, 300, 433]

C Axis Mfg

Enter title: Nut

Enter price: 8

Enter sales fig: 1000 2000 1800

Enter category: C

Enter oem: Simplex Pvt Ltd

Nut 8

[1000, 2000, 1800]

C Simplex Pvt Ltd

 	Note the syntax for calling init () of base classes in the constructor of derived class:
Product._______init_______(self)

Sales._______init_______(self)

 	We cannot use here the syntax super. init ().

 	Also note how the input for sales figures has been received using list comprehension.

 Diamond Problem

 	Suppose two classes Derived1 andDerived2 are derived from a base class calledBase using simple inheritance. Also, a new classDer is derived from Derived1 and Derived2 using multiple inheritance. This is known as diamond relationship.

 	If we now construct an object of Der it will have one copy of members from the path Base -> Derived1 and another copy from the path Base —> Derived2. This will result in ambiguity.

 	To eliminate the ambiguity, Python linearizes the search order in such a way that the left to right order while creatingDer is honored. In our case it is Derived1, Derived2. So we would get a copy of members from the path Base —> Derived1.
class Base:

def display(self):

print(‘In Base’)

class Derived1(Base):

def display(self):

print(‘In Derived1’)

class Derived2(Base):

def display(self):

print(‘In Derived2’)

class Der(Derived1, Derived2):

def display(self):

super().display()

Derived1.display(self)

Derived2.display(self)

print(Der._______mro_______)

d1 = Der()

d1.display()

On executing the program we get the following output:

In Derived2

In Derived1

In Derived2

(<class ‘_______main_______.Der’>, <class ‘_______main _______.Derived1’>, <class ‘_______main_______.Derived2’>, <class ‘_______main_______.Base’>, <class ‘object’>)

 	_______ mro_______ gives the method resolution order.

 Abstract Classes

 	Suppose we have a Shape class and from it we have derived Circle and Rectangle classes. Each contains a method called draw(). However, drawing a shape doesn’t make too much sense, hence we do not want draw() of Shape to ever get called. This can happen only if we can prevent creation of object of Shape class. This can be done as shown in the following program:
from abc import ABC, abstractmethod

class Shape(ABC):

@abstractmethod

def draw(self):

pass

class Rectangle(Shape):

def draw(self):

print(‘In Rectangle.draw’)

class Circle(Shape): def draw(self):

print(‘In Circle.draw’)

s = Shape() # will result in error, as Shape is abstract class c = Circle()

c.draw()

 	A class from which an object cannot be created is called an abstract class.

 	abc is a module. It stands for abstract base classes. From abc we have imported class ABC and decorator abstractmethod.

 	To create an abstract class we need to derive it from class ABC. We also need to mark draw() as abstract method using the decorator @abstractmethod.

 	If an abstract class contains only methods marked by the decorator @abstractmethod, it is often called an interface.

 	Decorators are discussed in Chapter 23.

 Runtime Polymorphism

 	Polymorphism means one thing existing in several different forms. Runtime polymorphism involves deciding at runtime which function from base class or derived class should get called. This feature is widely used in C++.

 	Parallel to Runtime Polymorphism, Java has a Dynamic Dispatch mechanism which works similarly.

 	Python is dynamically typed language, where type of any variable is determined at runtime based on its usage. Hence discussion of Runtime Polymorphism or Dynamic Dispatch mechanism is not relevant in Python.

 Programs

 Problem 19.1

 Define a class Shape. Inherit two classes Circle and Rectangle. Check programmatically the inheritance relationship between the classes. Create Shape and Circle objects. Report of which classes are these objects instances of.

 Program

 class Shape:

 pass

 class Rectangle(Shape):

 pass

 class Circle(Shape):

 pass

 s = Shape()

 c = Circle()

 print(isinstance(s, Shape))

 print(isinstance(s, Rectangle))

 print(isinstance(s, Circle))

 print(issubclass(Rectangle, Shape))

 print(issubclass(Circle, Shape))

 Output

 True

 False

 False

 True

 True

 Problem 19.2

 Write a program that uses simple inheritance between classes Base and Derived. If there is a method in Base class, how do you prevent it from being overridden in the Derived class?

 Program

 class Base:

 def_______method(self):

 print(‘In Base._______method’)

 def func(self):

 self._______method()

 class Derived(Base):

 def_______method(self):

 print(‘In Derived._______method’)

 b = Base()

 b.func()

 d = Derived()

 d.func()

 Output

 In Base._______method

 In Base._______method

 Tips

 	To prevent method from being overridden, prepend it with ___.

 	When func() is called using b, self contains address of Base class object. When it is called using d, self contains address of Derived class object.

 	In Base class __method() gets mangled to _Base___method() and in __Derived class it becomes _Derived_______method().

 	When func() calls ___method() from Base class, it is the _Base_______method() that gets called. In effect,_______method() cannot be overridden. This is true, even when self contains address of the Derived class object.

 Problem 19.3

 Write a program that defines a class calledProgression and inherits three classes from it AP, GP and FP, standing for Arithmetic Progression, Geometric Progression and Fibonacci Progression respectively. Progression class should act as a user-defined iterator. By default, it should generate integers stating with 0 and advancing in steps of 1. AP, GP and FP should make use of the iteration facility of Progression class. They should appropriately adjust themselves to generate numbers in arithmetic progression, geometric progression or Fibonacci progression.

 Program

 class Progression:

 def _______init_______(self, start = 0):

 self.cur = start

 def _______iter_______(self):

 return self

 def advance(self):

 self.cur += 1

 def_______next_______(self):

 if self.cur is None:

 raise StopIteration

 else:

 data = self.cur

 self.advance()

 return data

 def display(self, n):

 print(‘’.join(str(next(self)) for i in range(n)))

 class AP(Progression):

 def _______init_______(self, start = 0, step = 1):

 super()._______ init_______(start)

 self.step = step

 def advance(self):

 self.cur += self.step

 class GP(Progression):

 def _______init_______(self, start = 1, step = 2):

 super(). _______init_______(start)

 self.step = step

 def advance(self):

 self.cur *= self.step

 class FP(Progression):

 def _______init_______(self, first = 0, second = 1):

 super(). _______init_______(first)

 self.prev = second - first

 def advance(self):

 self.prev, self.cur = self.cur, self.prev + self.cur

 print(‘Default progression:’)

 p = Progression()

 p.display(10)

 print(‘AP with step 5:’)

 a = AP(5)

 a.display(10)

 print(‘AP with start 2 and step 4:’)

 a = AP(2, 4)

 a.display(10)

 print(‘GP with default multiple:’)

 g = GP()

 g.display(10)

 print(‘GP with start 1 and multiple 3:’)

 g = GP(1, 3)

 g.display(10)

 print(‘FP with default start values:’)

 f = FP()

 f.display(10)

 print(‘FP with start values 4 and 6:’)

 f = FP(4, 6)

 f.display(10)

 Output

 Default progression:

 0 1 2 3 4 5 6 7 8 9

 AP with step 5:

 5 6 7 8 9 10 11 12 13 14

 AP with start 2 and step 4:

 2 6 10 14 18 22 26 30 34 38

 GP with default multiple:

 1 2 4 8 16 32 64 128 256 512

 GP with start 1 and multiple 3:

 1 3 9 27 81 243 729 2187 6561 19683

 FP with default start values:

 0 1 1 2 3 5 8 13 21 34

 FP with start values 4 and 6:

 4 6 10 16 26 42 68 110 178 288

 Tips

 	Since Progression is an iterator it has to implement iter () and _______ next_______() methods.

 	_______ next () calls advance() method to suitably adjust the value of self.cur (and self.prev in case of FP).

 	Each derived class has an advance() method. Depending on which object’s address is present in self, that object’s advance() method gets called.

 	The generation of next data value happens one value at a time, when display() method’s for loop goes into action.

 	There are two ways to create an object and call display(). These are:
a = AP(5)

a.display(10)

or

AP(5).display(10)

 Problem 19.4

 Write a program that defines an abstract class calledPrinter containing an abstract methodprint(). Derive from it two classes— LaserPrinter and Inkjetprinter. Create objects of derived classes and call the print() method using these objects, passing to it the name of the file to be printed. In the print() method simply print the filename and the class name to which print() belongs.

 Program

 from abc import ABC, abstractmethod

 class Printer(ABC):

 def_______init_______(self, n):

 self.name = n

 @abstractmethod

 def print(self, docName):

 pass

 class LaserPrinter(Printer):

 def_______init_______(self, n):

 super()._______init_______(n)

 def print(self, docName):

 print(‘>> LaserPrinter.print’)

 print(‘Trying to print:’, docName)

 class InkjetPrinter(Printer):

 def_______init_______(self, n):

 super()._______init_______(n)

 def print(self, docName):

 print(‘>> InkjetPrinter.print’)

 print(‘Trying to print:’, docName)

 p = LaserPrinter(‘LaserJet 1100’)

 p.print(‘hello1.pdf’)

 p = InkjetPrinter(‘IBM 2140’)

 p.print(‘hello2.doc’)

 Output

 >> LaserPrinter.print

 Trying to print:

 hello1.pdf

 >> InkjetPrinter.print

 Trying to print:

 hello2.doc

 Problem 19.5

 Define an abstract class called Character containing an abstract method patriotism(). Define a class Actor containing a method style(). Define a class Person derived from Character and Actor. Implement the method patriotism() in it, and override the methodstyle() in it. Also define a new methoddo_acting() in it. Create an object of Person class and call the three methods in it.

 Program

 from abc import ABC, abstractmethod

 class Character(ABC):

 @abstractmethod

 def patriotism(self):

 pass

 class Actor:

 def style(self):

 print(‘>> Actor.Style:’)

 class Person(Actor, Character):

 def do_acting(self):

 print(‘>> Person.doActing’)

 def style(self):

 print(‘>> Person.style’)

 def patriotism(self):

 print(‘>> Person.patriotism’)

 p = Person()

 p.patriotism()

 p.style()

 p.do_acting()

 Output

 >> Person.patriotism

 >> Person.style

 >> Person.doActing

 Exercise

 [A] State whether the following statements are True or False:

 	Inheritance is the ability of a class to inherit properties and behavior from a parent class by extending it.

 	Containership is the ability of a class to contain objects of different classes as member data.

 	We can derive a class from a base class even if the base class’s source code is not available.

 	Multiple inheritance is different from multiple levels of inheritance.

 	An object of a derived class cannot access members of base class is the member names begin with.

 	Creating a derived class from a base class requires fundamental changes to the base class.

 	If a base class contains a member function func(), and a derived class does not contain a function with this name, an object of the derived class cannot access func().

 	If no constructors are specified for a derived class, objects of the derived class will use the constructors in the base class.

 	If a base class and a derived class each include a member function with the same name, the member function of the derived class will be called by an object of the derived class.

 	A class D can be derived from a class C, which is derived from a class B, which is derived from a class A.

 	It is illegal to make objects of one class members of another class.

 [B] Answer the following:

 	Which module should be imported to create abstract class?

 	For a class to be abstract from which class should we inherit it?

 	Implement a String class containing the following functions:
- Overloaded += operator function to perform string concatenation.

- Method toLower() to convert upper case letters to lower case.

- Method toUpper() to convert lower case letters to upper case.

 	Suppose there is a base class B and a derived class D derived from A. B has two public member functionsb1() and b2(), whereasD has two member functions d1() and d2(). Write these classes for the following different situations:
- b1() should be accessible from main module, b2() should not be.

- Neither b1(), nor b2() should be accessible from main module.

- Both b1() and b2() should be accessible from main module.

 	If a class D is derived from two base classes B1 and B2, then write these classes each containing a constructor. Ensure that while building an object of type D, constructor of B2 should get called. Also provide a destructor in each class. In what order would these destructors get called?

 	Create an abstract class called Vehicle containing methods speed(), maintenance() andvalue() in it. Derive classesFourWheeler, TwoWheeler and Airborne from Vehicle class. Check whether you are able to prevent creation of objects of Vehicle class. Call the methods using objects of other classes.

 	Assume a class D that is derived from classB. Which of the following can an object of class D access?
- members of D

- members of B

 [C] Match the following:

 	
 a. __ mro__()

 	
 1. ‘has a’ relationship

 	
 b. Inheritance

 	
 2. Object creation not allowed

 	
 c. __ var

 	
 3. Super class

 	
 d. Abstract class

 	
 4. Root class

 	
 e. Parent class

 	
 5. ‘is a’ relationship

 	
 f. object

 	
 6. Name mangling

 	
 g. Child class

 	
 7. Decides resolution order

 	
 h. Containership

 	
 8. Sub class

20

Iterators and Generators

	Iterables and Iterators

	zip() Function

	Iterators

	User-defined Iterators

	Generators

	Which to use When?

	Generator Expressions

	Programs

	Exercise

KanNotes

Iterables and Iterators

	An object is called iterable if it is capable of returning its
members one at a time. Containers like string, list, tuple are iterables.

	Iterator is an object which is used to iterate over an iterable. An iterable provides an iterator object.

	Iterators are implemented in for loops, comprehensions, generators etc.

zip() Function

	zip() function typically receives multiple iterable objects and returns an iterator of tuples based on them. This iterator can be used in a for loop as shown below.
words = [‘A’, ‘coddle’, ‘called’, ‘Molly’]

numbers = [10, 20, 30, 40]

for ele in zip(words, numbers):

print(ele[0], ele[1])

for ele in zip(words, numbers):

print(*ele)

for w, n in zip(words, numbers):

print(w, n)

All 3 for loops will output:

A 10

coddle 20

called 30

Molly 40

	If two iterables are passed to zip(), one containing 4 and other containing 6 elements, the returned iterator has 4 (shorter iterable) tuples.

	A list can be generated from the iterator of tuples returned by zip().
words = [‘A’, ‘coddle’, ‘called’, ‘Molly’]

numbers = [10, 20, 30, 40]

it = zip(words, numbers)

lst = list(it)

print(lst) # prints [(‘A’, 10), (‘coddle’, 20), (‘called’, 30), (‘Molly’, 40)]

	The values can be unzipped from the list into tuples using *.

	w, n = zip(*lst)

	print(w)

	# prints (‘A’, ‘coddle’, ‘called’, ‘Molly’)

	print(n)

	# print (10, 20, 30, 40)

Iterators

	We know that container objects like string, list, tuple, set, dictionary etc. can be iterated through using a for loop as in
for ch in ‘Good Afternoon’

print(ch)

for num in [10, 20, 30, 40, 50]

print(num)

Both these for loops call_______iter_______() method of str/ list. This method returns an iterator object. The iterator object has a method _______ next_______() which returns the next item in the str/ list container.

When all items have been iterated, next call to_______next_______() raises aStopIteration exception which tells the for loop to terminate. Exceptions have been discussed in Chapter 21.

	We too can call iter () and next () and get the same results.
lst = [10, 20, 30, 40]

i = lst._______iter_______()

print(i._______next_______())

print(i._______next_______())

print(i._______next_______())

	Instead of calling iter_______ () and_______next_______ (), we can call the more convenient iter() and next(). These functions in turn call_______ iter_______ () and next () respectively.
lst = [10, 20, 30, 40]

i = iter(lst)

print(next(i))

print(next(i))

print(next(i))

Note than once we have iterated a container, if we wish to iterate it again we have to obtain an iterator object afresh.

	An iterable is an object capable of returning its members one at a time. Programmatically, it is an object that has implemented _______ iter_______() in it.

	An iterator is an object that has implemented both iter () and _______ next_______() in it.

	As a proof that an iterable contains iter (), whereas an iterator contains both_______iter_______ () and_______next_______ (), we can check it using the hasattr() global function.
s = ‘Hello’

lst = [’Focussed’, ‘bursts’, ‘of’, ‘activity’]

print(hasattr(s, ‘ _______iter_______’))

print(hasattr(s, ‘_______next_______’))

print(hasattr(lst, ‘_______iter_______’))

print(hasattr(lst, ‘ _______next_______’))

i = iter(s)

j = iter(lst)

print(hasattr(i, ‘_______iter_______’))

print(hasattr(i, ‘_______ next_______’))

print(hasattr(j, ‘_______iter_______’))

print(hasattr(j, ‘_______next_______’))

On execution of this program we get the following output:

True

False

True

False

True

True

True

True

User-defined Iterators

	Suppose we wish our class to behave like an iterator. To do this we need to define iter () and next () in it.

	Our iterator class AvgAdj should maintain a list. When it is iterated upon it should return average of two adjacent numbers in the list.
class AvgAdj:

def_______init_______(self, data):

self._data = data

self._len = len(data)

self._first = 0

self._sec = 1

def_______iter_______(self):

return self

def_______next_______(self):

if self._sec == self._len:

raise StopIteration

self._avg = (self._data[self._first] + self._data[self._sec]) / 2

self._first += 1

self._sec += 1

return self._avg

lst = [10, 20, 30, 40, 50, 60, 70]

coll = AvgAdj(lst)

for val in coll:

print(val)

On execution of this program, we get the following output:

15.0

25.0

35.0

45.0

55.0

65.0

	_______ iter () is supposed to return an object which has implemented _______ next_______() in it. Since we have defined_______next_______() in AvgAdj class, we have returned self from_______iter_______().

	Length of lst is 7, whereas elements in it are indexed from 0 to 6.

	When self._sec becomes 7 it means that we have reached the end of list and further iteration is not possible. In this situation we have raised an exception StopIteration.

Generators

	Generators are very efficient functions that create iterators. They use yield statement instead of return whenever they wish to return data from the function.

	Specialty of a generator is that, it remembers the state of the function and the last statement it had executed when yield was executed.

	So each time next() is called, it resumes where it had left off last time.

	Generators can be used in place of class-based iterator that we saw in the last section.

	Generators are very compact because the __iter __(), __next __() and StopIteration code is created automatically for them.
def AvgAdj(data):

for i in range(0, len(data) - 1):

yield (data[i] + data[i + 1]) / 2

lst = [10, 20, 30, 40, 50, 60, 70]

for i in AvgAdj(lst):

print(i)

On execution of this program, we get the following output: 15.0

25.0

35.0

45.0

55.0

65.0

Which to use When?

	Suppose from a list of 100 integers we are to return an entity which contains elements which are prime numbers. In this case we will return an ‘iterable’ which contains a list of prime numbers.

	Suppose we wish to add all prime numbers below three million. In this case, first creating a list of all prime numbers and then adding them will consume lot of memory. So we should write an iterator class or a generator function which generates next prime number on the fly and adds it to the running sum.

Generator Expressions

	Like list/set/dictionary comprehensions, to make the code more compact as well as succinct, we can write compact generator expressions.

	A generator expression creates a generator on the fly without being required to use the yield statement.

	Some sample generator expressions are given below.
generate 20 random numbers in the range 10 to 100 and obtain

maximum out of them

print(max(random.randint(10, 100) for n in range(20)))

print sum of cubes of all numbers less than 20

print(sum(n * n * n for n in range(20)))

	List comprehensions are enclosed within [], set/dictionary comprehensions are enclosed within {}, whereas generator expressions are enclosed within ().

	Since a list comprehension returns a list, it consumes more memory than a generator expression. Generator expression takes less memory since it generates the next element on demand, rather than generating all elements upfront.
import sys

lst = [i * i for i in range(15)]

gen = (i * i for i in range(15))

print(lst)

print(gen)

print(sys.getsizeof(lst))

print(sys.getsizeof(gen))

On execution of this program, we get the following output:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]

<generator object <genexpr> at 0x003BD570>

100

48

	Though useful, generator expressions do not have the same power of a full-fledged generator function

Programs

Problem 20.1

Write a program that proves that a list is an iterable and not an iterator.

Program

lst = [10, 20, 30, 40, 50]

print(dir(lst))

i = iter(lst)

print(dir(i))

Output

[‘_______add_______’, ‘_______class_______’, ‘_______contains_______’, ‘_______delattr_______’, ‘_______delitem_______’, ‘_______dir_______’, ‘_______doc_______’, ‘_______eq_______’, ‘_______format_______’, ‘_______ge_______’, ‘_______getattribute _______’, ‘_______getitem_______’, ‘_______gt_______’, ‘_______hash_______’, ‘_______iadd_______’, ‘_______imul_______’, ‘_______init _______’, ‘_______init_subclass_______’, ‘_______iter_______’, ‘_______le_______’, ‘_______len_______’, ‘_______lt_______’, ‘_______mul _______’, ‘_______ne_______’, ‘_______new_______’, ‘_______reduce_______’, ‘_______reduce_ex_______’, ‘_______repr_______’, ‘_______reversed _______’, ‘_______rmul_______’, ‘_______setattr_______’, ‘_______ setitem_______’, ‘_______sizeof_______’, ‘index’, ‘insert’, ‘pop’, ‘remove’, ‘reverse’, ‘sort’]

[‘_______class_______’, ‘_______delattr_______’, ‘_______dir_______’, ‘_______doc_______’, ‘_______eq_______’, ‘_______format _______’, ‘_______ ge_______ ‘, ‘_______ getattribute_______ ‘, ‘_______ gt_______ ‘, ‘_______ hash_______ ‘, ‘_______ init_______ ‘, ‘ _______ init_subclass_______ ‘, ‘_______ iter_______ ‘, ‘_______ le_______ ‘, ‘_______ length_hint_______ ‘, ‘_______ lt_______ ‘, ‘_______ ne_______ ‘, ‘_______ new_______ ‘, ‘_______ next_______ ‘, ‘_______ reduce_______ ‘, ‘_______ reduce_ex_______ ‘, ‘_______ repr_______ ‘, ‘_______ setattr_______ ‘, ‘_______ setstate_______ ‘, ‘_______ sizeof_______ ‘, ‘_______ str_______ ‘, ‘ subclasshook ‘]

Tips

	lst is an iterable since dir(lst) shows __ iter__but no __next__.

	iter(lst) returns an iterator object, which is collected in i.

	dir(i) shows _______ iter_______as well as next. This shows that it is an iterator object.

Problem 20.2

Write a program that generates prime numbers below 3 million. Print sum of these prime numbers.

Program

def generate_primes():

num = 1

while True:

if isprime(num):

yield num

num += 1

def isprime(n):

if n > 1:

if n == 2:

return True

if n % 2 == 0:

return False

for i in range(2, n // 2):

if n % i == 0:

return False

else:

return True

else:

return False

total = 0

for next_prime in generate_primes():

if next_prime < 300000:

total += next_prime

else:

print(total)

exit()

Output

3709507114

Tips

	exit() terminates the execution of the program.

Problem 20.3

Write a program that uses dictionary comprehension to print sin, cos and tan tables for angles ranging from 0 to 360 in steps of 15 degrees. Write generator expressions find the maximum value of sine and cos.

Program

import math

pi = 3.14

sine_table = {ang: math.sin(ang * pi / 180) for ang in range(0, 360, 90)}

cos_table = {ang: math.cos(ang * pi / 180) for ang in range(0, 360, 90)}

tan_table = {ang: math.tan(ang * pi / 180) for ang in range(0, 360, 90)}

print(sine_table)

print(cos_table)

print(tan_table)

maxsin = max((math.sin(ang * pi / 180) for ang in range(0, 360, 90)))

maxcos = max((math.cos(ang * pi / 180) for ang in range(0, 360, 90)))

print(maxsin)

print(maxcos)

Output

{0: 0.0, 90: 0.9999996829318346, 180: 0.0015926529164868282, 270: - 0.999997146387718}

{0: 1.0, 90: 0.0007963267107332633, 180: -0.9999987317275395, 270: - 0.0023889781122815386}

{0: 0.0, 90: 1255.7655915007897, 180: -0.001592654936407223, 270:

418.58782265388515}

0.9999996829318346

1.0

Problem 20.4

Create 3 lists—a list of names, a list of ages and a list of salaries. Generate and print a list of tuples containing name, age and salary from the 3 lists. From this list generate 3 tuples—one containing all names, another containing all ages and third containing all salaries.

Program

names = [‘Amol’, ‘Anil’, ‘Akash’]

ages = [25, 23, 27]

salaries= [34555.50, 40000.00, 450000.00]

create iterator of tuples

it = zip(names, ages, salaries)

build list by iterating the iterator object

lst = list(it)

print(lst)

unzip the list into tuples

n, a, s = zip(*lst)

print(n)

print(a)

print(s)

Output

[(‘Amol’, 25, 34555.5), (‘Anil’, 23, 40000.0), (‘Akash’, 27, 450000.0)]

(‘Amol’, ‘Anil’, ‘Akash’) (25, 23, 27)

(34555.5, 40000.0, 450000.0)

Problem 20.5

Write a program to obtain transpose of a 3 x 4 matrix.

Program

mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

ti = zip(*mat)

lst = list(ti)

print(lst)

Output

[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

Tips

	mat contains a list of lists. These can be accessed using either mat[0], mat[1] and mat[2] or simply *mat.

	zip(*mat) receives three lists and returns an iterator of tuples, each tuple containing 3 elements.

	The iterator returned by zip() is used by list() to generate the list.

Problem 20.6

Write a program to multiply two matrices x(2 x 3) and y(2, 2) using list comprehension.

Program

[image:]

l1 = [xrow for xrow in x]

print(l1)

l2 = [(xrow, ycol) for ycol in zip(*y) for xrow in x]

print(l2)

l3 = [[sum(a * b for a,b in zip(xrow,ycol)) for ycol in zip(*y)]for xrow in x]

print(l3)

Output

[[1, 2, 3], [4, 5, 6]]

[([1, 2, 3], (11, 21, 31)), ([4, 5, 6], (11, 21, 31)), ([1, 2, 3], (12, 22, 32)), ([4, 5, 6], (12, 22, 32))]

[[146, 152], [335, 350]]

Tips

	To make it easy for you to understand the list comprehension, I have built it in 3 parts. Follow them by checking their output.

Problem 20.7

Suppose we have a list of 5 integers and a tuple of 5 floats. Can we zip them and obtain an iterator. If yes, how?

Program

integers = [10, 20, 30, 40, 50]

floats = (1.1, 2.2, 3.3, 4.4, 5.5)

ti = zip(integers, floats)

lst = list(ti)

for i, f in lst:

print(i, f)

Output

10 1.1

20 2.2

30 3.3

40 4.4

50 5.5

Tips

	Any iterable(s) can be passed to a zip() function.

Problem 20.8

Create two lists students and marks. Create a dictionary from these two lists using dictionary comprehension. Use names as keys and marks as values.

Program

lists of keys and values

lstnames = [‘Sunil’, ‘Sachin’, ‘Rahul’, ‘Kapil’, ‘Rohit’]

lstmarks = [54, 65, 45, 67, 78]

dictionary comprehension

d = {k:v for (k, v) in zip(lstnames, lstmarks)}

print(d)

Output

 {‘Sunil’: 54, ‘Sachin’: 65, ‘Rahul’: 45, ‘Kapil’: 67, ‘Rohit’: 78}
Problem 20.9

Create a dictionary containing names of students and marks obtained by them in three subjects. Write a program to print these names in tabular form with sorted names as columns and marks in three subjects listed below each student name as shown below.

[image:]

Program

d = {‘Rahul’:[67,76,39],’Sameer’:[58,86,78],‘Rakesh’:[59,70,81]}

lst = [(k, *v) for k, v in d.items()]

print(lst)

lst = [(k, *v) for k, v in sorted(d.items())]

print(lst)

for row in zip(*lst):

print(row)

for row in zip(*lst):

print(*row, sep = ‘\t’)

for row in zip(*((k, *v) for k, v in sorted(d.items()))):

print(*row, sep = ‘\t’)

Output

[(‘Rahul’, 67, 76, 39), (‘Sameer’, 58, 86, 78), (‘Rakesh’, 59, 70, 81)]

[(‘Rahul’, 67, 76, 39), (‘Rakesh’, 59, 70, 81), (‘Sameer’, 58, 86, 78)]

(‘Rahul’, ‘Rakesh’, ‘Sameer’)

(67, 59, 58)

(76, 70, 86)

(39, 81, 78)

[image:]

Tips

	Try to understand this program step-by-step:
lst = [(k, *v) for k, v in d.items()]

*v will unpack the marks in v. So a tuple like (‘Rahul’, 67, 76, 39) will be created. All such tuples will be collected in the list to create

[(‘Rahul’, 67, 76, 39), (‘Sameer’, 58, 86, 78), (‘Rakesh’, 59, 70, 81)]

	To create a list of tuples sorted by name we have used the sorted() function:
lst = [(k, *v) for k, v in sorted(d.items())]

This will create the list:

[(‘Rahul’, 67, 76, 39), (‘Rakesh’, 59, 70, 81), (‘Sameer’, 58, 86, 78)]

	The sorted list is then unpacked and submitted to the zip() function
for row in zip(*lst):

print(row)

This will print the tuples

(‘Rahul’, ‘Rakesh’, ‘Sameer’)

(67, 59, 58)

(76, 70, 86)

(39, 81, 78)

	We have then unpacked these tuples before printing and added separator ‘\t’ to properly align the values being printed.
for row in zip(*lst):

print(*row, sep = ‘\t’)

	Lastly we have combined all these activities into one loop:
for row in zip(*((k, *v) for k, v in sorted(d.items()))):

print(*row, sep = ‘\t’)

Problem 20.10

Write a program that defines a function pascal_triangle() that displays a Pascal Triangle of level received as parameter to the function. A Pascal’s Triangle of level 5 is shown below.

[image:]

Program

def pascal_triangle(n):

row = [1]

z = [0]

for x in range(n):

print(row)

row = [l + r for l, r in zip(row + z, z + row)]

pascal_triangle(5)

Output

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

Tips

	For n = 5, x will vary from 0 to 4.

	row + z merges two lists.

	For x = 1, row=[1], z=[0], so,
zip([1, 0], [0, 1]) gives tuples (1, 0), (0, 1)

l + r gives row = [1, 1]

	For x = 2, row=[1, 1], z=[0], so,
zip([1, 1, 0], [0, 1, 1]) gives tuples (1, 0), (1, 1), (0, 1)

l + r gives [1, 2, 1]

	For x = 3, row=[1, 2, 1], z=[0], so,
zip([1, 2, 1, 0], [0, 1, 2, 1]) gives tuples (1, 0), (2, 1), (1, 2), (0, 1)

l + r gives [1, 3, 3, 1]

	For x = 4, row=[1, 3, 3, 1], z=[0], so,
zip([1, 3, 3, 1, 0], [0, 1, 3, 3, 1]) gives (1, 0), (3, 1), (3, 3), (1, 3), (0, 1)

l + r gives [1, 4, 6, 4, 1]

Exercise

[A] Answer the following:

	Write a program to create a list of 5 odd integers. Replace the third element with a list of 4 even integers. Flatten, sort and print the list.

	Write a program to flatten the following list:
mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

	Write a program to generate a list of numbers in the range 2 to 50 that are divisible by 2 and 4.

	Suppose there are two lists, each holding 5 strings. Write a program to generate a list that consists of strings that are concatenated by picking corresponding elements from the two lists.

	Suppose a list contains 20 integers generated randomly. Receive a number from the keyboard and report position of all occurrences of this number in the list.

	Suppose there are two lists—one contains questions and another contains lists of 4 possible answers for each question. Write a program to generate a list that contains lists of question and its 4 possible answers.

	Suppose a list has 20 numbers. Write a program that removes all duplicates from this list.

	Write a program to obtain a median value of a list of numbers, without disturbing the order of the numbers in the list.

	A list contains only positive and negative integers. Write a program to obtain the number of negative numbers present in the list.

	Write a program to convert a list of tuples
[(10, 20, 30), (150.55, 145.60, 157.65), (‘A1’, ‘B1’, ‘C1’)]

into a list

[(10, 150.55, ‘A1’), (20, 145.60, ‘B1’), (30, 157.65, ‘C1’)]

	What will be the output of the following program:
x = [[1, 2, 3, 4], [4, 5, 6, 7]]

y = [[1, 1], [2, 2], [3, 3], [4, 4]]

l1 = [xrow for xrow in x]

print(l1)

l2 = [(xrow, ycol) for ycol in zip(*y) for xrow in x]

print(l2)

	Write a program that uses a generator to create a set of unique words from a line input through the keyboard.

	Write a program that uses a generator to find out maximum marks obtained by a student and his name from tuples of multiple students.

	Write a program that uses a generator that generates characters from a string in reverse order.

	What is the difference between the following statements:
sum([x**2 for x in range(20)])

sum(x**2 for x in range(20))

	Suppose there are two lists, each holding 5 strings. Write a program to generate a list that consists of strings that are concatenated by picking corresponding elements from the two lists.

	36 unique combinations can result from use of two dice. Create a dictionary which stores these combinations as tuples.

 21

 Exception Handling

 	What may go Wrong?

 	Syntax Errors

 	Exceptions

 	How to deal with Exceptions?

 	How to use try - except?

 	Nuances of try and except

 	User-defined Exceptions

 	else Block

 	finally Block

 	Exception Handling Tips

 	Programs

 	Exercise

 KanNotes

 What may go Wrong?

 	While creating and executing a Python program things may go wrong at two different stages—during compilation and during execution.

 	Errors that occur during compilation are called Syntax errors. Errors that occur during execution are called Exceptions.

 Syntax Errors

 	If things go wrong during compilation:
Means - Something in the program is not as per language grammar Reported by - Interpreter/Compiler

Action to be taken - Rectify program

 	Examples of syntax errors:

	print ‘Hello’

	# () is missing

	d = ‘Nagpur’

	a = b + float(d)

	# d is a string, so it cannot be converted to float

	a = Math.pow(3)

	# pow() needs two arguments

 	Other common syntax error are:
- Leaving out a symbol, such as a colon, comma or brackets

- Misspelling a keyword

- Incorrect indentation

- Empty if, else, while, for, function, class, method

- Missing:

- Incorrect number of positional arguments

 	Suppose we try to compile the following piece of code:
basic_salary = input(‘Enter basic salary’)

if basic_salary < 5000

print(‘Does not qualify for Diwali bonus’)

We get the following syntax error:

File ‘c:\Users\Kanetkar\Desktop\Phone\src\phone.py’, line 2

if basic_salary < 5000

^

SyntaxError: invalid syntax

 	^ indicates the position in the line where an error was detected. It occurred because: is missing after the condition.

 	Filename and line number are also displayed to help you locate the erroneous statement easily.

 Exceptions

 	If things go wrong during execution (runtime):
Means - Something unforeseen has happened

Reported by - Python Runtime

Action to be taken - Tackle it on the fly

 	Examples of Runtime errors:
Memory Related - Stack / Heap overflow, Exceeding array bounds Arithmetic Related - Divide by zero, Arithmetic overflow/underflow Others - Attempt to use an unassigned reference, File not found

 	Even if the program is grammatically correct, things may go wrong during execution causing exceptions.
a = int(input(‘Enter an integer:’))

b = int(input(‘Enter an integer:’))

c = a / b

If during execution of this script we give value of b as 0, then following message gets displayed:

Exception has occurred: ZeroDivisionError

division by zero

File ‘C:\Users\Kanetkar\Desktop\Phone\src\trial.py’, line 3, in

<module> c = a / b

blah blah… rest of the stack trace showing how we landed here

 	Another example of exception:
a, b = 10, 20

c = a / b * d

File ‘c:\Users\Kanetkar\Desktop\Phone\src\phone.py’, line 2, in

<module> c = a / b * d

NameError: name ‘d’ is not defined

blah blah… rest of the stack trace showing how we landed here

 	The stack trace prints the names of the files, line numbers starting from the first file that got executed, up to the point of exception.

 	The stack trace is useful for the programmer to figure out where things went wrong. However, a user is likely to get spooked looking at it, thinking something is very wrong. So we should try and tackle the exceptions ourselves and provide a graceful exit from the program, instead of printing the stack trace.

 How to deal with Exceptions?

 	try and except blocks are used to deal with an exception.

 	Statement(s) which you suspect may go wrong at runtime should be enclosed within a try block.

 	If while executing statement(s) in try block, an exceptional condition occurs it can be tackled in 2 Ways:

	Pack exception information in an object and raise an exception.

	Let Python Runtime pack exception information in an object and raise an exception.

In the examples in previous section Python runtime raised exceptions ZeroDivisionError and NameError.

Raising an exception is same as throwing an exception in C++/Java.

 	Two things that can be done when an exception is raised:

	Catch the raised exception object in except block.

	Raise the exception further.

 	If we catch the exception object, we can either perform a graceful exit or rectify the exceptional situation and continue execution.

 	If we raise the exception object further - Default exception handler catches the object, prints stack trace and terminates.

 	Two ways to create exception objects:

	From ready-made exception classes (like ZeroDivisionError)

	From user-defined exception classes

 	Advantage of tackling exceptions in OO manner:
- More information can be packed into exception objects.

- Propagation of exception objects from the point where they are raised to the point where they are tackled is managed by Python Runtime.

 	How Python facilitates exception handling:
- By providing keywords try, except, else, finally, raise.

- By providing readymade exception classes.

 How to use try - except?

 	try block - Enclose in it the code that you anticipate will cause an exception.

 	except block - Catch the raised exception in it. It must immediately follow the try block.
try:

a = int(input(‘Enter an integer:’))

b = int(input(‘Enter an integer:’))

c = a / b

print(‘c =’, c)

except ZeroDivisionError:

print(‘Denominator is 0’)

Given below is the sample interaction with the program:

Enter an integer: 10

Enter an integer: 0

Denominator is 0

 	If no exception occurs while executing the try block, control goes to first line beyond the except block.

 	If an exception occurs during execution of statements intry block, an exception is raised and rest of thetry block is skipped. Control now goes to the except block. Here, if the type of exception raised matches the exception named after except keyword, that except block is executed.

 	If an exception occurs which does not match the exception named in except block, then the default exception handler catches the exception, prints stack trace and terminates execution.

 	When exception is raised and except block is executed, control goes to the next line afterexcept block, unless there is areturn or raise in except block.

 Nuances of try and except

 	try block:
- Can be nested inside another try block.

- If an exception occurs and if a matching except handler is not found in the except block, then the outer try’s except handlers are inspected for a match.

 	except block:
- Multiple except blocks for one try block are OK.

- At a time only one except block goes to work.

- If same action is to be taken in case of multiple exceptions, then the except clause can mention these exceptions in a tuple

try:

some statements

except (NameError, TypeError, ZeroDivisionError):

some other statements

- Order of except blocks is important - Derived first, Base last.

- An empty except is like a catchall—catches all exceptions.

- An exception may be re-raised from any except block.

 	Given below is a program that puts some of the try, except nuances to a practical stint:
try:

a = int(input(‘Enter an integer:’))

b = int(input(‘Enter an integer:’))

c = a / b

print(‘c =’, c)

except ZeroDivisionError as zde:

print(‘Denominator is 0’)

print(zde.args)

print(zde)

except ValueError:

print(‘Unable to convert string to int’)

except:

print(‘Some unknown error’)

Given below is the sample interaction with the program:

Enter an integer: 10

Enter an integer: 20

c = 0.5

Enter an integer: 10

Enter an integer: 0

Denominator is 0

(‘division by zero’,)

division by zero

Enter an integer: 10

Enter an integer: abc

Unable to convert string to int

 	If an exception occurs, the type of exception raised is matched with the exceptions named after except keyword. When a match occurs, that except block is
executed, and then execution continues after the last except block.

 	If we wish to do something more before doing a graceful exit, we can use the keyword as to receive the exception object. We can then access its argument either using its args variable, or by simply using the exception object.

 	args refers to arguments that were used while creating the exception object.

 User-defined Exceptions

 	Since all exceptional conditions cannot be anticipated, for every exceptional condition there cannot be a class in Python library.

 	In such cases we can define our own exception class as shown in the following program:
class InsufficientBalanceError(Exception):

def_______init_______ (self, accno, cb):

self.accno = accno

self.curbal = cb

def get_details(self):

return { ‘Acc no’: self.accno, ‘Current Balance’: self.curbal}

class Customers:

def_______init_______(self):

self.dct = {}

def append(self, accno, n, bal):

self.dct[accno] = { ‘Name’: n, ‘Balance’: bal }

def deposit(self, accno, amt):

d = self.dct[accno]

d[‘Balance’] = d[‘Balance’] + amt

self.dct[accno] = d

def display(self):

for k, v in self.dct.items():

print(k, v)

print()

def withdraw(self, accno, amt):

d = self.dct[accno]

curbal = d[‘Balance’]

if curbal - amt < 5000:

raise InsufficientBalanceError(accno, curbal)

else:

d[‘Balance’] = d[‘Balance’] - amt

self.dct[accno] = d

c = Customers()

c.append(123, ‘Sanjay’, 9000)

c.append(101, ‘Sameer’, 8000)

c.append(423, ‘Ajay’, 7000)

c.append(133, ‘Sanket’, 6000)

c.display()

c.deposit(123, 1000)

c.deposit(423, 2000)

c.display()

try:

c.withdraw(423, 3000)

print(‘Amount withdrawn successfully’)

c.display()

c.withdraw(101, 5000)

print(‘Amount withdrawn successfully’)

c.display()

except InsufficientBalanceError as ibe:

print(‘Withdrawal denied’)

print(‘Insufficient balance’)

print(ibe.get_details())

On execution of this program we get the following output:

123 {‘Name’: ‘Sanjay’, ‘Balance’: 9000}

101 {‘Name’: ‘Sameer’, ‘Balance’: 8000}

423 {‘Name’: ‘Ajay’, ‘Balance’: 7000}

133 {‘Name’: ‘Sanket’, ‘Balance’: 6000}

123 {‘Name’: ‘Sanjay’, ‘Balance’: 10000}

101 {‘Name’: ‘Sameer’, ‘Balance’: 8000}

423 {‘Name’: ‘Ajay’, ‘Balance’: 9000}

133 {‘Name’: ‘Sanket’, ‘Balance’: 6000}

Amount withdrawn successfully

123 {‘Name’: ‘Sanjay’, ‘Balance’: 10000}

101 {‘Name’: ‘Sameer’, ‘Balance’: 8000}

423 {‘Name’: ‘Ajay’, ‘Balance’: 6000}

133 {‘Name’: ‘Sanket’, ‘Balance’: 6000}

Withdrawal denied

Insufficient balance

{‘Acc no’: 101, ‘Current Balance’: 8000}

 	Each customer in a Bank has data like account number, name and balance amount. This data is maintained in nested directories.

 	If during withdrawal of money from a particular account the balance goes below Rs. 5000, then a user-defined exception called InsufficientBalanceError is raised.

 	In the matching except block, details of the withdrawal transaction that resulted into an exception are fetched by calling get_details() method present in InsufficientBalanceError class and displayed.

 	get_details() returns the formatted data. If we wish to get raw data, then we can use ibe.args variable, or simply ibe.
print(ibe.args)

print(ibe)

 else Block

 	The try .. except statement may also have an optional else block.

 	If it is present, it must occur after all the except blocks.

 	Control goes to else block if no exception occurs during execution of the try block.
try:

lst = [10, 20, 30, 40, 50]

for num in lst:

i = int(num)

j = i * i

print(i, j)

except NameError:

print(NameError.args)

else:

print(‘Total numbers processed’, len(lst))

del(lst)

We get the following output on executing this program: 10 100

20 400

30 900

40 1600

50 2500

Total numbers processed 5

 	Control goes to else block since no exception occurred while obtaining squares.

 	If we replace one of the elements in lst to ‘abc’, then a NameError will occur which will be caught by except block. In this case else block doesn’t go to work.

 finally Block

 	finally block is optional.

 	Code in finally always runs, no matter what! Even if a return or break occurs first.

 	finally block is placed after except blocks (if they exist).

 	try block must have except block and/or finally block.

 	finally block is commonly used for releasing external resources like files, network connections or database connections, irrespective of whether the use of the resource was successful or not.

 Exception Handling Tips

 	Don’t catch and ignore an exception.

 	Don’t catch everything using a catchall except, distinguish between types of exceptions.

 	Make exception handling optimally elaborate; not too much, not too little.

 Programs

 Problem 21.1

 Write a program that infinitely receives positive integer as input and prints its square. If a negative number is entered then raise an exception, display a relevant error message and make a graceful exit.

 Program

 try:

 while True:

 num = int(input(‘Enter a positive number:’))

 if num >= 0:

 print(num * num)

 else:

 raise ValueError(‘Negative number’)

 except ValueError as ve:

 print(ve.args)

 Output

 Enter a positive number: 12 144

 Enter a positive number: 34 1156

 Enter a positive number: 45 2025

 Enter a positive number: -9

 (‘Negative number’,)

 Problem 21.2

 Write a program that implements a stack data structure of specified size. If the stack becomes full and we still try to push an element to it, then an IndexError exception should be raised. Similarly, if the stack is empty and we try to pop an element from it then an IndexError exception should be raised.

 Program

 class Stack:

 def_______init_______(self, sz):

 self.size = sz

 self.arr = []

 self.top = -1

 def push(self, n):

 if self.top + 1 == self.size:

 raise IndexError(‘Stack is full’)

 else:

 self.top += 1

 self.arr = self.arr + [n]

 def pop(self):

 if self.top == -1:

 raise IndexError(‘Stack is empty’)

 else:

 n = self.arr[self.top]

 self.top -= 1

 return n

 def printall(self):

 print(self.arr)

 s = Stack(5)

 try:

 s.push(10)

 n = s.pop()

 print(n)

 n = s.pop()

 print(n)

 s.push(20)

 s.push(30)

 s.push(40)

 s.push(50)

 s.push(60)

 s.printall()

 s.push(70)

 except IndexError as ie:

 print(ie.args)

 Output

 10

 (‘Stack is empty’,)

 Tips

 	A new element is added to the stack by merging two lists.

 	IndexError is a readymade exception class. Here we have used it to raise a stack full or stack empty exception.

 Problem 21.3

 Write a program that implements a queue data structure of specified size. If the queue becomes full and we still try to add an element to it, then a user-defined QueueError exception should be raised. Similarly, if the queue is empty and we try to delete an element from it then a QueueError exception should be raised.

 Program

 class QueueError(Exception):

 def_______init_______(self, msg, front, rear):

 self.errmsg = msg + ‘ front = ‘ + str(front) + ‘ rear = ‘ + str(rear)

 def get_message(self):

 return self.errmsg

 class Queue:

 def_______init_______(self, sz):

 self.size = sz

 self.arr = []

 self.front = self.rear = -1

 def add_queue(self, item):

 if self.rear == self.size - 1:

 raise QueueError(‘Queue is full.’, self.front, self.rear)

 else:

 self.rear += 1

 self.arr = self.arr + [item]

 if self.front == -1:

 self.front = 0

 def delete_queue(self):

 if self.front == -1:

 raise QueueError(‘Queue is empty.’, self.front, self.rear)

 else:

 data = self.arr[self.front]

 if (self.front == self.rear):

 self.front = self.rear = -1

 else:

 self.front += 1

 return data

 def printall(self):

 print(self.arr)

 q = Queue(5)

 try:

 q.add_queue(11)

 q.add_queue(12)

 q.add_queue(13)

 q.add_queue(14)

 q.add_queue(15) # oops, queue is full

 q.printall()

 i = q.delete_queue()

 print(‘Item deleted = ‘, i)

 i = q.delete_queue()

 print(‘Item deleted = ‘, i)

 i = q.delete_queue()

 print(‘Item deleted = ‘, i)

 i = q.delete_queue()

 print(‘Item deleted = ‘, i)

 i = q.delete_queue()

 print(‘Item deleted = ‘, i)

 i = q.delete_queue() # oops, queue is empty

 print(‘Item deleted = ‘, i)

 except QueueError as qe:

 print(qe.get_message())

 Output

 [11, 12, 13, 14, 15]

 Item deleted = 11

 Item deleted = 12

 Item deleted = 13

 Item deleted = 14

 Item deleted = 15

 Queue is empty. front = -1 rear = -1

 Problem 21.4

 Write a program that receives an integer as input. If a string is entered instead of an integer, then report an error and give another chance to user to enter an integer. Continue this process till correct input is supplied.

 Program

 while True:

 try:

 num = int(input(‘Enter a number:’))

 break

 except ValueError:

 print(‘Incorrect Input’)

 print(‘You entered: ‘, num)

 Output

 Enter a number: aa

 Incorrect Input

 Enter a number: abc

 Incorrect Input

 Enter a number: a

 Incorrect Input

 Enter a number: 23

 You entered: 23

 Exercise

 [A] State whether the following statements are True or False:

 	The exception handling mechanism is supposed to handle compile time errors.

 	It is necessary to declare the exception class within the class in which an exception is going to be thrown.

 	Every raised exception must be caught.

 	For one try block there can be multiple except blocks.

 	When an exception is raised, an exception class’s constructor gets called.

 	try blocks cannot be nested.

 	Proper destruction of an object is guaranteed by exception handling mechanism.

 	All exceptions occur at runtime.

 	Exceptions offer an object-oriented way of handling runtime errors.

 	If an exception occurs, then the program terminates abruptly without getting any chance to recover from the exception.

 	No matter whether an exception occurs or not, the statements in the finally clause (if present) will get executed.

 	A program can contain multiple finally clauses.

 	finally clause is used to perform cleanup operations like closing the network/database connections.

 	While raising a user-defined exception, multiple values can be set in the exception object.

 	In one function/method, there can be only one try block.

 	An exception must be caught in the same function/method in which it is raised.

 	All values set up in the exception object are available in the except block that catches the exception.

 	If our program does not catch an exception then Python runtime catches it.

 	It is possible to create user-defined exceptions.

 	All types of exceptions can be caught using the Exception class.

 	For every try block there must be a corresponding finally block.

 [B] Answer the following:

 	If we do not catch the exception thrown at runtime then who catches it?

 	Explain in short most compelling reasons for using exception handling over conventional error handling approaches.

 	Is it necessary that all classes that can be used to represent exceptions be derived from base class Exception?

 	What is the use of a finally block in Python exception handling mechanism?

 	How does nested exception handling work in Python?

 	Write a program that receives 10 integers and stores them and their cubes in a dictionary. If the number entered is less than 3, raise a user-defined exception NumberTooSmall, and if the number entered is more than 30, then raise a user-defined exception NumberTooBig. Whether an exception occurs or not, at the end print the contents of the dictionary.

 	What’s wrong with the following code snippet?
try:

some statements

except:

report error 1

except ZeroDivisionError:

report error 2

 	Which of these keywords is not part of Python’s exception handling—try, catch, throw, raise, finally, else?

 	What will be the output of the following code?
def fun():

try:

return 10

finally:

return 20

k = fun()

print(k)

 22

 File Input/Output

 	I/O System

 	File I/O

 	Read / Write Operations

 	File Opening Modes

 	with Keyword

 	Moving within a File

 	Serialization and Deserialization

 	Serialization of User-defined Types

 	File and Directory Operations

 	Programs

 	Exercise

 KanNotes

 I/O System

 	Expectations from an I/O System:
- It should allow us to communicate with multiple sources and destinations.
Ex. Sources - Keyboard, File, Network
Ex. Destinations - Screen, File, Network

- It should allow us to input/output varied entities.
Ex. Numbers, Strings, Lists, Tuples, Sets, Dictionaries, etc.

- It should allow us to communicate in multiple ways.
Ex. Sequential access, Random access

- It should allow us to deal with underlying file system.
Ex. Create, modify, rename, delete files and directories

 	Types of data used for I/O:
Text - ‘485000’ as a sequence of Unicode characters.

Binary - 485000 as sequence of bytes of its binary equivalent.

 	File Types:
All program files are text files.

All image, music, video, executable files are binary files.

 File I/O

 	Sequence of operations in File I/O:
- Open a file

- Read/Write data to it

- Close the file

write/read text data

msg1 = ‘Pay taxes with a smile…\n’

msg2 = ‘I tried, but they wanted money!\n’

msg3 = ‘Don\’t feel bad…\n’

msg4 = ‘It is alright to have no talent!\n’

f = open(‘messages’, ‘w’)

f.write(msg1)

f.write(msg2)

f.write(msg3)

f.write(msg4)

f.close()

f = open(‘messages’, ‘r’)

data = f.read()

print(data)

f.close()

On executing this program, we get the following output:

Pay taxes with a smile…

I tried, but they wanted money!

Don’t feel bad…

It is alright to have no talent!

 	Opening a file brings its contents to a buffer in memory. While performing read/write operations, data is read from or written to buffer.

	f = open(filename, ‘r’)

	# opens file for reading

	f = open(filename, ‘w’)

	# opens file for writing

	f.close()

	# closes the file by vacating the buffer

Once file is closed read/write operation on it are not feasible.

 	f.write() writes a new string each time to the file.

 	data = f.read() reads all the lines into data.

 Read / Write Operations

 	There are two functions for writing data to a file:
msg = ‘Bad officials are elected by good citizens who do not vote.\n’ msgs = [‘Humpty\n’, ‘Dumpty\n’, ‘Sat\n’, ‘On\n’, ‘a\n’, ‘wall\n’]

f.write(msg)

f.writelines(msgs)

 	To write objects other than strings, we need to convert them to strings before writing:
tpl = (‘Ajay’, 23, 15000)

lst = {23, 45, 56, 78, 90}

d = {‘Name’: ‘Dilip’, ‘Age’: 25}

f.write(str(tpl))

f.write(str(lst))

f.write(str(d))

 	There are three functions for reading data from a file represented by file object f.

	data = f.read()

	# reads entire file contents and returns as string

	data = f.read(n)

	# reads n characters, and returns as string

	data = f.readline()

	# reads a line, and returns as string

If end of file is reached f.read() returns an empty string.

 	There are two ways to read a file line-by-line till end of file:
first way

while True:

data = f.readline()

if data == ‘’:

break

print(data, end =‘’)

second way

for data in f:

print(data, end =‘’)

 	To read all the lines in a file and form a list of lines:
data = f.readlines()

data = list(data)

 File Opening Modes

 	There are multiple file-opening modes available:
‘r’ - Opens file for reading in text mode.

‘w’ - Opens file for writing in text mode.

‘a’ - Opens file for appending in text mode.

‘rb’ - Opens file for reading in text mode.

‘wb’ - Opens file for writing in text mode.

‘ab’ - Opens file for appending in text mode.

‘r+’, ‘rb+’ - Opens file for reading and writing.

‘w+’, ‘wb+’ - Opens file for reading and writing.

‘a+’, ‘ab+’ - Opens file for appending and reading.

If mode argument is not mentioned while opening a file, then ‘r’ is assumed.

 	While opening a file for writing, if the file already exists, it is overwritten.

 with Keyword

 	It is a good idea to close a file once its usage is over, as it will free up system resources.

 	If we don’t close a file, when the file object is destroyed file will be closed for us by Python’s garbage collector program.

 	If we use with keyword while opening the file, the file gets closed as soon as its usage is over.
with open(‘messages’, ‘r’) as f:

data = f.read()

 	with ensures that the file is closed even if an exception occurs while processing it.

 Moving within a File

 	When we are reading a file or writing a file, the next read or write operation is performed from the next character/byte as compared to the previous read/write operation.

 	Thus if we read the first character from a file using f.read(1), next call to f.read(1) will automatically read the second character in the file.

 	At times we may wish to move to desired position in a file before reading/writing. This can be done using f.seek() method.

 	General form of seek() is given below:
f.seek(offset, reference)

reference can take values 0, 1, 2 standing for beginning of file, current position in file and end of file respectively.

 	For file opened in text mode, reference values 0 and 2 alone can be used. Also, using 2, we can only move to end of file.

	f.seek(512, 0)

	# moves to position 512 from beginning of file

	f.seek(0, 2)

	# moves to end of file

 	For file opened in binary mode, reference values 0, 1, 2 can be used.

	f.seek(12, 0)

	# moves to position 12 from beginning of file

	f.seek(-15, 2)

	# moves 15 positions to left from end of file

	f.seek(6, 1)

	# moves 6 positions to right from current position

	f.seek(-10, 1)

	# moves 10 positions to left from current position

 Serialization and Deserialization

 	Compared to strings, reading/writing numbers from/to a file is tedious. This is because write() writes a string to a file and read() returns a string read from a file. So we need to do conversions while reading/writing, as shown in the following program:
f = open(‘numberstxt’, ‘w+’)

f.write(str(233)+’\n’)

f.write(str(13.45))

f.seek(0)

a = int(f.readline())

b = float(f.readline())

print(a + a)

print(b + b)

 	If we are to read/write more complicated data in the form of tuple, dictionaries, etc. from/to file it will become more difficult. In such cases a module called json should be used.

 	json module converts Python data into appropriate JSON types before writing data to a file. Likewise, it converts JSON types read from a file into Python data. The first process is calledserialization and the second is called deserialization.
serialize/deserialize a list

import json

f = open(‘sampledata’, ‘w+’)

lst = [10, 20, 30, 40, 50, 60, 70, 80, 90]

json.dump(lst, f)

f.seek(0)

inlst = json.load(f)

print(inlst)

f.close()

serialize/deserialize a tuple

import json

f = open(‘sampledata’, ‘w+’)

tpl = (‘Ajay’, 23, 2455.55)

json.dump(tpl, f)

f.seek(0)

intpl = json.load(f)

print(tuple(intpl))

f.close()

serialize/deserialize a dictionary

import json

f = open(‘sampledata’, ‘w+’)

dct = { ‘Anil’: 24, ‘Ajay’: 23, ‘Nisha’: 22}

json.dump(dct, f)

f.seek(0)

indct = json.load(f)

print(indct)

f.close()

 	Serialization of a Python type to JSON data is done using a function dump(). It writes the serialized data to a file.

 	Deserialization of a JSON type to a Python type is done using a function load(). It reads the data from a file, does the conversion and returns the converted data.

 	While deserializing a tuple, load() returns a list and not a tuple. So we need to convert the list to a tuple using tuple() conversion function.

 	Instead of writing JSON data to a file, we can write it to a string, and read it back from a string as shown below:
import json

lst = [10, 20, 30, 40, 50, 60, 70, 80, 90]

tpl = (‘Ajay’, 23, 2455.55)

dct = { ‘Anil’: 24, ‘Ajay’: 23, ‘Nisha’: 22}

str1 = json.dumps(lst)

str2 = json.dumps(tpl)

str3 = json.dumps(dct)

l = json.loads(str1)

t = tuple(json.loads(str2))

d = json.loads(str3)

print(l)

print(t)

print(d)

 	It is possible to serialize/deserialize nested lists and directories as shown below:
serialize/deserialize a dictionary

import json

lofl = [10, [20, 30, 40], [50, 60, 70], 80, 90]

f = open(‘data’, ‘w+’)

json.dump(lofl, f) f.seek(0)

inlofl = json.load(f)

print(inlofl) f.close()

serialize/deserialize a dictionary

import json

contacts = {‘Anil’: {‘DOB’: ‘17/11/98‘, ‘Favorite’: ‘Igloo’},

‘Amol’: {‘DOB’: ‘14/10/99’, ‘Favorite’: ‘Tundra’},

‘Ravi’: {‘DOB’: ‘19/11/97’, ‘Favorite’: ‘Artic’}}

f = open(‘data’, ‘w+’)

json.dump(contacts, f)

f.seek(0)

incontacts = json.load(f)

print(incontacts)

f.close()

 Serialization of User-defined Types

 	Standard Python types can be easily converted to JSON and vice-cersa. However, if we attempt to serialize a user-defined Complex type to JSON we get following error:
TypeError: Object of type ‘Complex’ is not JSON serializable

 	To serialize user-defined types we need to define encoding and decoding functions. This is shown in the following program where, we serialize Complex type.
import json

def encode_complex(x):

if isinstance(x, Complex):

return(x.real, x.imag)

else:

raise TypeError(‘Complex object is not JSON serializable’)

def decode_complex(dct):

if ‘_______Complex_______’ in dct:

return Complex(dct[‘real’], dct[‘imag’])

return dct

class Complex:

def_______init_______(self, r = 0, i = 0):

self.real = r

self.imag = i

def print_data(self):

print(self.real, self.imag)

c = Complex(1.0, 2.0)

f = open(‘data’, ‘w+’)

json.dump(c, f, default = encode_complex)

f.seek(0)

inc = json.load(f, object_hook = decode_complex)

print(inc)

 	To translate a Complex object into JSON, we have defined an encoding function called encode_complex(). We have provided this function to dump() method’s default parameter. dump() method will useencode_complex() function while serializing a Complex object.

 	In encode_complex() we have checked whether the object received is of the type Complex. If it is then we return the Complex object data as a tuple. If not, we raise a TypeError exception.

 	During deserialization when load() method attempts to parse an object, instead of the default decoder we provide our decoder decode_complex() through the object_hook parameter.

 File and Directory Operations

 	Python lets us interact with the underlying file system. In the process we can perform many file and directory operations.

 	File operations include creation, deletion, renaming, copying, checking if an entry is a file, obtaining statistics of a file, etc.

 	Directory operations include creation, recursive creation, renaming, changing into, deleting, listing a directory, etc.

 	Path operations include obtaining the absolute and relative path, splitting path elements, joining paths, etc.

 	‘.’ represents current directory and ‘..’ represents parent of current directory.

 	Given below is a program that demonstrates some file, directory and path operations.
import os

import shutil

print(os.name)

print(os.getcwd())

print(os.listdir(‘.’))

print(os.listdir(‘..’))

if os.path.exists(‘mydir’):

print(‘mydir already exists’)

else:

os.mkdir(‘mydir’)

os.chdir(‘mydir’)

os.makedirs(‘.\dir1\dir2\dir3’)

f = open(‘myfile’, ‘w’)

f.write(‘Having one child makes you a parent…’)

f.write(‘Having two you are a referee’)

f.close()

stats = os.stat(‘myfile’)

print(‘Size = ‘, stats.st_size)

os.rename(‘myfile’, ‘yourfile’)

shutil.copyfile(‘yourfile’, ‘ourfile’)

os.remove(‘yourfile’)

curpath = os.path.abspath(‘.’)

os.path.join(curpath, ‘yourfile’)

if os.path.isfile(curpath):

print(‘yourfile file exists’)

else:

print(‘yourfile file doesn\’t exist’)

 Programs

 Problem 22.1

 Write a program to read the contents of file ‘messages’ one character at a time. Print each character that is read.

 Program

 f = open(‘messages’, ‘r’)

 while True:

 data = f.read(1)

 if data == ‘’:

 break

 print(data, end = ‘’)

 f.close()

 Output

 You may not be great when you start, but you need to start to be great. Work hard until you don’t need an introduction.

 Work so hard that one day your signature becomes an autograph.

 Tips

 	f.read(1) reads 1 character from a file object f.

 	read() returns an empty string on reaching end of file.

 	if end = ‘’ is not used in the call to print(), each character read will be printed in a new line.

 Problem 22.2

 Write a program that writes four integers to a file called ‘numbers’. Go to following positions in the file and report them.

 10 positions from beginning

 2 positions to the right of current position

 5 positions to the left of current position

 10 positions to the left from end

 Program

 f = open(‘numbers’, ‘wb’)

 f.write(b’231’)

 f.write(b’431’)

 f.write(b‘2632’)

 f.write(b‘833’)

 f.close()

 f = open(‘numbers’, ‘rb’)

 f.seek(10, 0)

 print(f.tell())

 f.seek(2, 1)

 print(f.tell())

 f.seek(-5, 1)

 print(f.tell())

 f.seek(-10, 2)

 print(f.tell())

 f.close()

 Output

 10

 12

 7

 1

 Problem 22.3

 Write a Python program that searches for a file, obtains its size and reports the size in bytes/KB/MB/GB/TB as appropriate.

 Program

 import os

 def convert(num):

 for x in [‘bytes’, ‘KB’, ‘MB’, ‘GB’, ‘TB’]:

 if num < 1024.0:

 return “%3.1f %s” % (num, x)

 num /= 1024.0

 def file_size(file_path):

 if os.path.isfile(file_path):

 file_info = os.stat(file_path)

 return convert(file_info.st_size)

 file_path = r‘C:\Windows\System32\mspaint.exe’

 print(file_size(file_path))

 Output

 6.1 MB

 Problem 22.4

 Write a Python program that reports the time of creation, time of last access and time of last modification for a given file.

 Program

 import os, time

 file = ‘sampledata’

 print(file)

 created = os.path.getctime(file)

 modified = os.path.getmtime(file)

 accessed = os.path.getatime(file)

 print(‘Date created: ‘ + time.ctime(created))

 print(‘Date modified: ‘ + time.ctime(modified))

 print(‘Date accessed: ‘ + time.ctime(accessed))

 Output

 sampledata

 Date created: Tue May 14 08:51:52 2019

 Date modified: Tue May 14 09:11:59 2019

 Date accessed: Tue May 14 08:51:52 2019

 Tips

 	Functions getctime(), getmtime() and getatime() return the creation, modification and access time for the given file. The times are returned as number of seconds since the epoch. Epoch is considered to be 1st Jan 1970, 00:00:00.

 	ctime() function of time module converts the time expressed in seconds since epoch into a string representing local time.

 Exercise

 [A] State whether the following statements are True or False:

 	If a file is opened for reading, it is necessary that the file must exist.

 	If a file opened for writing already exists, its contents would be overwritten.

 	For opening a file in append mode it is necessary that the file should exist.

 [B] Answer the following:

 	On opening a file for reading which of the following activities are performed:
1. The disk is searched for existence of the file.

2. The file is brought into memory.

3. A pointer is set up which points to the first character in the file.

4. All the above.

 	Is it necessary that a file created in text mode must always be opened in text mode for subsequent operations?

 	While using the statement,
fp = open(‘myfile.’, ‘r’)

what happens if,

- ‘myfile’ does not exist on the disk

- ‘myfile’ exists on the disk

 	While using the statement,
f = open(‘myfile’, ‘wb’)

what happens if,

- ‘myfile’ does not exist on the disk

- ‘myfile’ exists on the disk

 	A floating-point list contains percentage marks obtained by students in an examination. To store these marks in a file ‘marks.dat’, in which mode would you open the file and why?

 [C] Attempt the following:

 	Write a program to read a file and display its contents along with line numbers before each line.

 	Write a program to append the contents of one file at the end of another.

 	Suppose a file contains student’s records with each record containing name and age of a student. Write a program to read these records and display them in sorted order by name.

 	Write a program to copy contents of one file to another. While doing so replace all lowercase characters with their equivalent uppercase characters.

 	Write a program that merges lines alternately from two files and writes the results to new file. If one file has less number of lines than the other, the remaining lines from the larger file should be simply copied into the target file.

 	Write a program to encrypt/decrypt a file using:
(1) Offset cipher: In this cipher each character from the source file is offset with a fixed value and then written to the target file.
For example, if character read from the source file is ‘A’, then write a character represented by ‘A’ + 128 to the target file.

(2) Substitution cipher: In this cipher each for character read from the source file a corresponding predetermined character is written to the target file.
For example, if character ‘A’ is read from the source file, then a ‘!’ would be written to the target file. Similarly, every ‘B’ would be substituted by ‘5’ and so on.

 	Suppose an Employee object contains following details:
employee code

employee name

date of joining

salary

Write a program to serialize and deserialize this data.

 	A hospital keeps a file of blood donors in which each record has the format:
Name: 20 Columns

Address: 40 Columns

Age: 2 Columns

Blood Type: 1 Column (Type 1, 2, 3 or 4)

Write a program to read the file and print a list of all blood donors whose age is below 25 and whose blood type is 2.

 	Given a list of names of students in a class, write a program to store the names in a file on disk. Make a provision to display the nth name in the list, where n is read from the keyboard.

 	Assume that a Master file contains two fields, roll number and name of the student. At the end of the year, a set of students join the class and another set leaves. A Transaction file contains the roll numbers and an appropriate code to add or delete a student.
Write a program to create another file that contains the updated list of names and roll numbers. Assume that the Master file and the Transaction file are arranged in ascending order by roll numbers. The updated file should also be in ascending order by roll numbers.

 	Given a text file, write a program to create another text file deleting the words “a”, “the”, “an” and replacing each one of them with a blank space.

 23

 Miscellany

 	Documentation Strings

 	Command-line Arguments

 	Parsing of Command-line

 	Bitwise Operators

 	Assertion

 	Decorators

 	Decorating Functions with Arguments

 	Unicode

 	bytes Datatype

 	Programs

 	Exercise

 KanNotes

 The topics discussed in this chapter are far too removed from the mainstream Python programming for inclusion in the earlier chapters. These topics provide certain useful programming features, and could prove to be of immense help in certain programming strategies.

 Documentation Strings

 	It is a good idea to mention a documentation string (often called doscstring) below a function, module, class or method definition. It should be the first line below the def or the class statement.

 	The docstring is available in the attribute doc.

 	One-line docstrings should be written within triple quotes.

 	Multi-line docstrings should contain a summary line followed by a blank line, followed by a detailed comment.

 	Multi-line docstrings are also written within triple quotes.

 	Using help() method we can print the functions/class/method documentation systematically.

 	In the program given below the functiondisplay() displays a message and the function show(msg1, msg2) displays msg1 in lowercase and msg2 in uppercase. It uses a single line docstring for display() and a mulit-line docstring for show(). It displays both the docstrings. Also, it generates help on both the functions.
def display():

“““Display a message”””

print(‘Hello’)

print(display._______doc _______)

def show(msg1 = ‘’, msg2 = ‘’):

“““Display 2 messages

Arguments:

msg1 — message to be displayed in lowercase (default ‘’)

msg2 — message to be displayed in uppercase (default ‘’)

”””

print(msg1.lower())

print(msg2.upper())

print(show._______doc_______)

display()

show(‘Cindrella’, ‘Mozerella’)

help(display)

help(show)

On execution of the program it produces the following output:

Hello

Display a message.

cindrella

MOZERELLA

Display 2 messages.

Arguments:

msg1 — message to be displayed in lowercase (default ‘’)

msg2 — message to be displayed in uppercase (default ‘’)

Help on function display in module_______main_______:

display()

Display a message.

Help on function show in module_______main_______:

show(msg1=‘’, msg2=‘’)

Display 2 messages.

Arguments:

msg1 — message to be displayed in lowercase (default ‘’)

 Command-line Arguments

 	Arguments passed to a Python script are available in sys.argv.
sample.py

import sys

print(‘Number of arguments recd. = ‘, len(sys.argv))

print(‘Arguments recd. = ‘, str(sys.argv))

If we execute the script as

C:\>sample.py cat dog parrot

we get the following output:

Number of arguments recd. = 4

Arguments recd. = sample.py cat dog parrot

 	If we are to write a script for copying contents of one file to another, we can receive source and target filenames through command-line arguments.
filecopy.py

import sys, getopt

import shutil

argc = len(sys.argv)

if argc != 3:

print(‘Incorrect usage’)

print(‘Correct usage: filecopy source target’)

else:

source = sys.argv[1]

target = sys.argv[2]

shutil.copyfile(source, target)

 Parsing of Command-line

 	While using the ‘filecopy.py’ program shown above, the first filename is always treated as source and second as target. If we wish to have flexibility in supplying source and target filenames, we can use options at command-line:
filecopy.py -s phone -t newphone

filecopy -t newphone -s phone

filecopy -h

 	To permit this flexibility, we should use the getopt module to parse the command-line.
filecopy.py

import sys, getopt

import shutil

if len(sys.argv) == 1:

print(‘Incorrect usage’)

print(‘Correct usage: filecopy.py -s <source> -t <target>’)

sys.exit(1)

source = ‘’

target = ‘’

try:

options, arguments = getopt.getopt(sys.argv[1:],‘hs:t:’)

except getopt.GetoptError:

print(‘filecopy.py -s <source> -t <target>’)

else:

for opt, arg in options:

if opt == ‘-h’:

print(‘filecopy.py -s <source> -t <target>’)

sys.exit(2)

elif opt == ‘-s’:

source = arg

elif opt == ‘-t’:

target = arg

else:

print(‘source file: ‘, source)

print(‘target file: ‘, target)

if source and target:

shutil.copyfile(source, target)

 	The getopt() method parses sys.argv[1:] and returns a sequence of (option, argument) pairs and a sequence of non-option arguments.

 	Option and its argument is mentioned in the second parameter of getopt() by separating them using ‘:’.

 	-h option is for help about usage of the program. It has no argument. If used, it will be available in options as (‘h’, ‘’).

 	arguments list is empty since at command line nothing other than options and their arguments are provided. Had we used
filecopy.py -s phone -t newphone word1 word2

options would be [(‘-s’, ‘phone’), (‘-t’, ‘newphone’)]

arguments would be [‘word1’, ‘word2’]

 	Note that non-option arguments must always follow option arguments, otherwise they too would be treated as non-option arguments.

 	sys.exit() terminates the execution of the program.

 	Since IDLE has no easy provision to provide command-line arguments, to experiment with getopt() instead of executing the script every time initialize the sys.argv list:
sys.argv =[‘C:\a.py’, ‘word1’, ‘word2’]

 Bitwise Operators

 	Bitwise operators permit us to work with individual bits of a byte. There are many bitwise operators available:
~ - Complement

<< - left shift, >> - right shift

& - and, | - or, ^ - xor

 	Bitwise operators usage:

	ch = 32

	dh = ~ch #

	toggles 0s to1s and 1s to 0s

	eh = ch << 3

	# << shifts bits in ch 3 positions to left

	fh = ch >> 2

	# >> shifts bits in ch 2 positions to right

	a = 45 & 32

	# and bits of 45 and 32

	b = 45 | 32

	# or bits of 45 and 32

	c = 45 ^ 32

	# xor bits of 45 and 32

 	Remember:
Anything ANDed with 0 is 0.

Anything ORed with 1 is 1.

1 XORed with 1 is 0.

 	Bitwise operators purpose:

	~

	- Convert 0 to 1 and 1 to 0

	<< >>

	- Shift out desired number of bits from left or right

	&

	- Check whether a bit is on / off. Put off a particular bit

	|

	- Put on a particular bit

	^

	- Toggle a bit

 	<<= >>= &= |= ^= - Bitwise in-place operators
a = a << 5 is same as a <<= 5

b = b & 2 is same as b &= 2

 	Except ~ all other bitwise operators are binary operators.

 Assertion

 	An assertion allows you to express programmatically your assumption about the data at a particular point in execution.

 	Assertions perform run-time checks of assumptions that you would have otherwise put in code comments.
denominator should not be zero

avg = sum(numlist) / len(numlist)

Instead of this, a safer way to code will be:

assert len(numlist) != 0

avg = sum(numlist) / len(numlist)

If the condition following assert is true, program proceeds to next instruction. If it turns out to be false then an AssertionError exception occurs.

 	Assertion may also be followed by a relevant message, which will be displayed if the condition fails
assert len(numlist) != 0, ‘Check denominator, it appears to be 0’ avg = sum(numlist) / len(numlist)

 	Benefits of Assertions:
- Over a period of time comments may get out-of-date. Same will not be the case with assert, because if they do, then they will fail for legitimate cases, and you will be forced to update them.

- Assert statements are very useful while debugging a program as it halts the program at the point where an error occurs. This makes sense as there is no point in continuing the execution if the assumption is no longer true.

- With assert statements, failures appear earlier and closer to the locations of the errors, which make them easier to diagnose and fix.

 Decorators

 	Functions are ‘first-class citizens’ of Python. This means like integers, strings, lists, modules, etc. functions too can be created and destroyed dynamically, passed to other functions and returned as values.

 	First class citizenship feature is used in developing decorators.

 	A decorator function receives a function, adds some functionality (decoration) to it and returns it.

 	There are many decorators available in the library. These include the decorator @abstractmethod that we used in Chapter 19.

 	Other commonly used library decorators are@classmethod, @staticmethod and@property. @classmethod and @staticmethod decorators are used to define methods inside a class namespace that are not connected to a particular instance of that class. The @property decorator is used to customize getters and setters for class attributes.

 	We can also create user-defined decorators, as shown in the following program:
def my_decorator(func):

def wrapper():

print(‘*****************’)

func()

print(‘~~~~~~~~~~~~~~~~~’)

return wrapper

def display():

print(‘I stand decorated’)

def show():

print(‘Nothing great. Me too!’)

display = my_decorator(display)

display()

show = my_decorator(show)

show()

On executing the program, we get the following output.

I stand decorated

~~~~~~~~~~~~~~~~~

*****************

Nothing great. Me too!

~~~~~~~~~~~~~~~~~


 	Here display() and show() are normal functions. Both these functions have been decorated by a decorator function called my_decorator(). The decorator function has an inner function called wrapper().

 	Name of a function merely contains address of the function object. Hence, in the statement
display = my_decorator(display)

we are passing address of function display() to my_decorator(). my_decorator() collects it in func, and returns address of the inner function wrapper(). We are collecting this address back in display.

 	When we call display(), in reality wrapper() gets called. Since it is an inner function, it has access to variable func of the outer function. It uses the address stored in func to call the function display(). Before and after this call, it prints a pattern.

 	Once a decorator has been created, it can be applied to multiple functions. In addition to display(), we have also applied it to show() function.

 	The syntax of decorating display() is a complex for two reasons. Firstly, we have to use the word display thrice. Secondly, the decoration gets a bit hidden away below the definition of the function.

 	To solve both the problems, Python permits usage of @ symbol to decorate a function as shown below:
def my_decorator(func):

def wrapper():

print(‘*****************’)

func()

print(‘~~~~~~~~~~~~~~~~~’)

return wrapper

@my_decorator

def display():

print(‘I stand decorated’)

@my_decorator

def show():

print(‘Nothing great. Me too!’)

display()

show()

 Decorating Functions with Arguments

 	Suppose we wish to define a decorator that can report time required for executing any function. We want a common decorator which will work for any function regardless of number and type of arguments that it receives and returns.
import time

def timer(func):

def calculate(*args, **kwargs):

start_time = time.perf_counter()

value = func(*args, **kwargs)

end_time = time.perf_counter()

runtime = end_time - start_time

print(f‘Finished {func._______name_______!r} in {runtime:.8f} secs’)

return value

return calculate

@timer

def product(num):

fact = 1

for i in range(num):

fact = fact * i + 1

return fact

@timer

def product_and_sum(num):

p = 1

for i in range(num):

p = p * i + 1

s = 0

for i in range(num):

s = s + i + 1

return (p, s)

@timer

def time_pass(num):

for i in range(num):

i += 1

p = product(10)

print(‘product of first 10 nos.=’, p)

p = product(20)

print(‘product of first 20 nos.=’, p)

fs = product_and_sum(10)

print(‘product and sum of first 10 nos.=’, fs)

fs = product_and_sum(20)

print(‘product and sum of first 20 nos. =’, fs)

time_pass(20)

Here is the output of the program…

Finished ‘product’ in 0.00000770 secs

product of first 10 nos.= 986410

Finished ‘product’ in 0.00001240 secs

product of first 20 nos.= 330665665962404000

Finished ‘product_and_sum’ in 0.00001583 secs

product and sum of first 10 nos.= (986410, 55)

Finished ‘product_and_sum’ in 0.00001968 secs

product and sum of first 20 nos. = (330665665962404000, 210)

Finished ‘time_pass’ in 0.00000813 secs

 	We have determined execution time of three functions—product(), product_and_sum() and time_pass(). Each varies in arguments and return type. We are still able to apply the same decorator @timer to all of them.

 	The arguments passed while calling the 3 functions are received in *args and **kwargs. This takes care of any number of positional arguments and any number of keyword arguments that are needed by the function. They are then passed to the suitable functions through the call
value = func(*args, **kwargs)

 	The value(s) returned by the function being called is collected in value and returned.

 	Rather than finding the difference between the start and end time of a function in terms of seconds a performance counter is used.

 	time.perf_counter() returns the value of a performance counter, i.e. a clock in fractional seconds. Difference between two consecutive calls to this function determines the time required for executing a function.

 	On similar lines it is possible to define decorators for methods in a class.

 Unicode

 	Unicode is a standard for representation, encoding, and handling of text expressed in all scripts of the world.

 	It is a myth that every character in Unicode is 2 bytes long. Unicode has already gone beyond 65536 characters.

 	In Unicode every character is assigned an integer value called code point, which are usually expressed in Hexadecimal.

 	Code points for A, B, C, D, E are 0041, 0042, 0043, 0044, 0045. Code points for characters [image:] of Devanagari script are 0905, 0906, 0907, 0908, 0909.

 	Computers understand only bytes. So we need a way to represent Unicode code points as bytes in order to store or transmit them. Unicode standard defines a number of ways to represent code points as bytes. These are called encodings.

 	There are different encoding schemes like UTF-8, UTF-16, ASCII, 8859-1, Windows 1252, etc. UTF-8 is perhaps the most popular encoding scheme.

 	The same Unicode code point will be interpreted differently by different encoding schemes.

 	Code points 0041 maps to byte value 41 in UTF-8, whereas it maps to byte values ff fe 00 in UTF-16. Similarly, code point 0905 maps to byte values e0 a4 85 and ff fe 05 \t in UTF-8 and UTF-16 repsectively. You may refer table available at https://en.wikipedia.org/wiki/UTF-8 for one to one mapping of code points to byte values.

 	UTF-8 uses a variable number of bytes for each code point. The higher the code point value, the more bytes it needs in UTF-8.

 bytes Datatype

 	In Python text is always represented as Unicode characters and is represented by str type, whereas, binary data is represented by bytes type. You can create a bytes literal with a prefix b.
s = ‘Hi’

print(type(s))

print(type(‘Hello’))

by = b‘\xe0\xa4\x85’

print(type(by))

print(type(b‘\xee\x84\x65’))

will output

<class ‘str’>

<class ‘str’>

<class ‘bytes’>

<class ‘bytes’>

 	We can’t mix str and bytes in concatenation, in checking whether one is inside another, or while passing one to a function that expects the other.

 	Strings can be encoded to bytes, and bytes can be decoded back to strings as shown below:

[image:]

[image:]

 	How these Unicode code points will be interpreted by your machine or your software depends upon the encoding scheme used. If we do not specify the encoding scheme, then the default encoding scheme set on your machine will be used.

 	We can find out the default encoding scheme by printing the value present in sys.stdin.encoding. On my machine it is set to UTF-8.

 	So when we print eng or dev strings, the code points present in the strings are mapped to UTF-8 byte values and characters corresponding to these byte values are printed.

 Programs

 Problem 23.1

 Write a program that displays all files in current directory. It can receive options -h or -l or -w from command-line. If -h is received display help about the program. If -l is received, display files one line at a time,. If -w is received, display files separated by tab character.

 Program

 # mydir.py

 import os, sys, getopt

 if len(sys.argv) == 1:

 print(os.listdir(‘.’))

 sys.exit(1)

 try:

 options, arguments = getopt.getopt(sys.argv[1:],‘hlw’)

 print(options)

 print(arguments)

 for opt, arg in options:

 print(opt)

 if opt == ‘-h’:

 print(‘mydir.py -h -l -w’)

 sys.exit(2)

 elif opt == ‘-l’:

 lst = os.listdir(‘.’)

 print(*lst, sep = ‘\n’)

 elif opt == ‘-w’:

 lst = os.listdir(‘.’)

 print(*lst, sep = ‘\t’)

 except getopt.GetoptError:

 print(‘mydir.py -h -l -w’)

 Output

 C:\>mydir -l

 data

 messages

 mydir

 nbproject

 numbers

 numbersbin

 numberstxt

 sampledata

 src

 Program 23.2

 Define a function show_bits() which displays the binary equivalent of the integer passed to it. Call it to display binary equivalent of 45.

 Program

 def show_bits(n):

 for i in range(32, -1, -1):

 andmask = 1 << i

 k = n & andmask

 print(‘0’, end = ‘’) if k == 0 else print(‘1’, end = ‘’)

 show_bits(45)

 print()

 print(bin(45))

 Output

 000000000000000000000000000101101

 0b101101

 Tips

 	show_bits() performs a bitwise and operation with individual bits of 45, and prints a 1 or 0 based on the value of the individual bit.

 Problem 23.3

 Windows stores date of creation of a file as a 2-byte number with the following bit distribution:

 left-most 7 bits: year - 1980

 middle 4 bits - month

 right-most 5 bits - day

 Write a program that converts 9766 into a date 6/1/1999.

 Program

 dt = 9766

 y = (dt >> 9) + 1980

 m = (dt & 0b111100000) >> 5

 d = (dt & 0b11111)

 print(str(d) + ‘/’ + str(m) + ‘/’ + str(y))

 Output

 6/1/1999

 Tips

 	Number preceded by 0b is treated as a binary number.

 Problem 23.4

 Windows stores time of creation of a file as a 2-byte number. Distribution of different bits which account for hours, minutes and seconds is as follows:

 left-most 5 bits: hours

 middle 6 bits - minute

 right-most 5 bits - second / 2

 Write a program to convert time represented by a number 26031 into 12:45:30.

 Program

 tm = 26031

 hr = tm >> 11

 min = (tm & 0b11111100000) >> 5

 sec = (tm & 0b11111) * 2

 print(str(hr) + ‘:’ + str(min) + ‘:’ + str(sec))

 Output

 12:45:30

 Problem 23.5

 Write assert statements for the following with suitable messages:

 - Salary multiplier sm must be non-zero

 - Both p and q are of same type

 - Value present in num is part of the list lst

 - Length of combined string is 45 characters

 - Gross salary is in the range 30,000 to 45,000

 Program

 # Salary multiplier m must be non-zero

 sm = 45

 assert sm != 0, ‘Oops, salary multiplier is 0’

 # Both p and q are of type Sample

 class Sample:

 pass

 class NewSample:

 pass

 p = Sample()

 q = NewSample()

 assert type(p) == type(q), ‘Type mismatch’

 # Value present in num is part of the list lst

 num = 45

 lst = [10, 20, 30, 40, 50]

 assert num in lst, ‘num is missing from lst’

 # Length of combined string is less than 45 characters

 s1 = ‘A successful marriage requires falling in love many times…’

 s2 = ‘Always with the same person!’

 s = s1 + s2

 assert len(s) <= 45, ‘String s is too long’

 # Gross salary is in the range 30,000 to 45,000

 gs = 30000 + 20000 * 15 / 100 + 20000 * 12 / 100

 assert gs >= 30000 and gs <= 45000, ‘Gross salary out of range’

 Problem 23.6

 Define a decorator that will decorate any function such that it prepends a call with a message indicating that the function is being called and follows the call with a message indicating that the function has been called. Also, report the name of the function being called, its arguments and its return value. A sample output is given below:

 Calling sum_num ((10, 20), {})

 Called sum_num ((10, 20), {}) got return value: 30

 Program

 def calldecorator(func):

 def _decorated(*arg, **kwargs):

 print(f‘Calling {func._______name_______} ({arg}, {kwargs})’)

 ret = func(*arg, **kwargs)

 print(f‘Called {func._______name_______} ({arg}, {kwargs}) got ret val: {ret}’)

 return ret

 return _decorated

 @calldecorator

 def sum_num(arg1,arg2):

 return arg1 + arg2

 @calldecorator

 def prod_num(arg1,arg2):

 return arg1 * arg2

 @calldecorator

 def message(msg):

 pass

 sum_num(10, 20)

 prod_num(10, 20)

 message(‘Errors should never pass silently’)

 Output

 Calling sum_num ((10, 20), {})

 Called sum_num ((10, 20), {}) got return value: 30

 Calling prod_num ((10, 20), {})

 Called prod_num ((10, 20), {}) got return value: 200

 Calling message ((‘Errors should never pass silently’,), {})

 Called message ((‘Errors should never pass silently’,), {}) got return

 value: None

 Exercise

 [A] State whether the following statements are True or False:

 	We can send arguments at command-line to any Python program.

 	The zeroth element of sys.argv is always the name of the file being executed.

 	In Python a function is treated as an object.

 	A function can be passed to a function and can be returned from a function.

 	A decorator adds some features to an existing function.

 	Once a decorator has been created, it can be applied to only one function within the program.

 	It is mandatory that the function being decorated should not receive any arguments.

 	It is mandatory that the function being decorated should not return any value.

 	Type of ‘Good!’ is bytes.

 	Type of msg in msg = ‘Good!’ is str.

 [B] Answer the following:

 	Is it necessary to mention the docstring for a function immediately below the def statement?

 	Write a program using command-line arguments to search for a word in a file and replace it with the specified word. The usage of the program is shown below.
C:\> change -o oldword -n newword -f filename

 	Write a program that can be used at command prompt as a calculating utility. The usage of the program is shown below.
C:\> calc <switch> <n> <m>

Where, n and m are two integer operands. switch can be any arithmetic operator. The output should be the result of the operation.

 	Rewrite the following expressions using bitwise compound assignment operators:
a = a | 3

a = a & 0x48

b = b ^ 0x22

c = c << 2

d = d >> 4

 	Consider an unsigned integer in which rightmost bit is numbered as 0. Write a function checkbits(x, p, n) which returns True if all ‘n’ bits starting from position ‘p’ are on, False otherwise. For example, checkbits(x, 4, 3) will return true if bits 4, 3 and 2 are 1 in number x.

 	Write a program to receive a number as input and check whether its 3rd, 6th and 7th bit is on.

 	Write a program to receive a 8-bit number into a variable and then exchange its higher 4 bits with lower 4 bits.

 	Write a program to receive a 8-bit number into a variable and then set its odd bits to 1.

 24

 Multi-threading

 	Types of Concurrencies

 	Types of Multi-threading

 	When to use Concurrency

 	Thread Properties

 	Launching Threads

 	Passing parameters to a thread

 	Programs

 	Exercise

 KanNotes

 While driving a car we carry out several activities in parallel—we listen to music, we follow the traffic rules, and we talk to the co-passengers. Since programmers are people and programming is the art of solving people
s problems, it is only natural that in programming in general, and in Python in particular, too, there are facilities to do several activities concurrently.

 Types of Concurrencies

 	A process or a task is a program that is running in memory.

 	Python supports two types of concurrencies:
- Multi-processing

- Multi-threading

 	Multi-processing is the ability to execute multiple processes simultaneously.

 	Multi-threading is the ability to execute multiple parts of a program simultaneously. Each part of the program is called a thread. Each thread follows a separate path of execution.

 	Examples of Multi-processing:
- Several Windows applications running in memory

- Multiple instances of Paint or Notepad in memory

 	Examples of Multi-threading:
- Displaying the progress bar while carrying out copying of files

- Printing one Word document while printing another

 	Advantage of Multi-processing:
- Capability of multi-core processors can be exploited by running different processes in each processor simultaneously. This is often called parallelism.

 	Advantages of Multi-threading:
- Improves application’s speed, by making CPU do other things instead of waiting for slow I/O operations to finish

- Simplifies program design

 Types of Multi-threading

 	In a multi-threaded program one thread runs for some time, then it stops and the second thread starts running. After some time, second thread stops and the third thread starts running. This happens in a round-robin fashion. So we get a feeling that all threads are running simultaneously, whereas in reality at a time only one thread is running. This is true even if the program is being executed on a multi-core processor.

 	Multi-threading is of two types:
- Pre-emptive multi-threading - The OS decides when to switch from one task to another.

- Cooperative multi-threading - The task decides when to give up the control to the next task.

 	Python modules available for different types of concurrencies:
Multi-processing - multiprocessing

Pre-emptive multi-threading - threading

Cooperative multi-threading - asyncio

 When to use Concurrency

 	Concurrency can make a big difference in performance of two types of problems:
- I/O-bound problems

- CPU-bound problems

 	Usually CPU works much faster than I/O operations.

 	I/O-bound problems cause your program to slow down because it has to frequently wait for some I/O operations to get over.

 	CPU bound problems are those that do significant computation without doing any I/O operations.

 	Performance of I/O bound programs can be improved by using pre-emptive or cooperative multi-threading. Thumb rule usually followed is—use asyncio when you can, threading when you must.

 	Performance of CPU bound programs can be improved by using multi-processing.

 Thread Properties

 	Every running thread has a name a number called thread identifier associated with it.

 	The name of all running threads need not be unique, whereas the identifier must be unique.

 	The identifier could be reused for other threads, if the current thread ends.
import threading

t = threading.current_thread() # returns current Thread object

print(“Current thread:”, t) # prints thread name, identifier & status

print(“Thread name:”, t.name)

print(“Thread identifier:”, t.ident)

print(“Is thread alive:”, t.is_alive())

t.name = ‘MyThread’

print(“After name change:”, t.name)

Here, current_thread() is a function defined inthreading module and name and ident are properties of Thread class.

 Launching Threads

 	There are two ways to launch a new thread:
- By passing the name of the function that should run as a separate thread, to the constructor of the Thread class.

- By overriding init () and run() methods in a subclass of Thread class.

 	Method 1 - thread creation
th1 = threading.Thread(name = ‘My first thread’, target = func1)

th2 = threading.Thread(target = func2) # use default name

th1.start()

th2.start()

 	Method 2 - thread creation
class SquareGeneratorThread(threading.Thread):

def_______init_______ (self):

threading.Thread._______init_______(self)

def run(self):

pass

th = SquareGeneratorThread()

th.start()

 	Once a thread object is created, its activity must be started by calling the thread’s start() method. This method in turn invokes the run() method.

 	start() method will raise an exception RuntimeError if called more than once on the same thread object.

 Passing parameters to a Thread

 	Sometimes we may wish to pass some parameters to the target function of a thread object.
th1 = threading.Thread(target = squares, args = (a, b))

th2 = threading.Thread(target = cubes, args = (a,))

Arguments being passed to the constructor of Thread will ultimately be passed to the target function. Arguments must be in the form of a tuple.

 	Sometimes we may wish to pass some parameters to the run() method in the thread class. For this pass the parameters to the constructor while creating the thread object. The constructor should store them in object’s variables. Once stored, run() will be able to access them.
th = SquareGeneratorThread(a, b, c)

 Programs

 Problem 24.1

 Write a program that launches three threads, assigns new names to two of them. Suspend each thread for 1 second after it has been launched.

 Program

 import threading

 import time

 def fun1():

 t = threading.current_thread()

 print(‘Starting’, t.name)

 time.sleep(1)

 print(‘Exiting’, t.name)

 def fun2():

 t = threading.current_thread()

 print(‘Starting’, t.name)

 time.sleep(1)

 print(‘Exiting’, t.name)

 def fun3():

 t = threading.current_thread()

 print(‘Starting’, t.name)

 time.sleep(1)

 print(‘Exiting’, t.name)

 t1 = threading.Thread(target=fun1) # use default name

 t2 = threading.Thread(name = ‘My second thread’, target = fun2)

 t3 = threading.Thread(name = ‘My third thread’, target = fun3)

 t1.start()

 t2.start()

 t3.start()

 Output

 Starting Thread-1

 Starting My second thread

 Starting My third thread

 Exiting Thread-1

 Exiting My third thread

 Exiting My second thread

 Problem 24.2

 Write a program that calculates the squares and cubes of first 6 odd numbers through functions that are executed sequentially. Incorporate a delay of 0.5 sec. after calculation of each square/cube value. Report the time required for execution of the program.

 Program

 import time

 import threading

 def squares(nos):

 print(‘Calculating squares…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ‘, n, ‘ square =’, n * n)

 def cubes(nos):

 print(‘Calculating cubes…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ‘, n, ‘ cube =’, n * n * n)

 arr = [1, 3, 5, 7, 9, 11]

 startTime = time.time()

 squares(arr)

 cubes(arr)

 endTime = time.time()

 print(‘Time required = ‘, endTime - startTime, ‘sec’)

 Output

 Calculating squares…

 n = 1 square = 1

 n = 3 square = 9

 n = 5 square = 25

 n = 7 square = 49

 n = 9 square = 81

 n = 11 square = 121

 Calculating cubes…

 n = 1 cube = 1

 n = 3 cube = 27

 n = 5 cube = 125

 n = 7 cube = 343

 n = 9 cube = 729

 n = 11 cube = 1331

 Time required = 6.000343322753906 sec

 Tips

 	sleep() suspends execution of the calling thread for the given number of seconds.

 	time() function returns the time in seconds since the epoch (Jan 1, 1970, 00:00:00) as a floating point number.

 Problem 24.3

 Write a program that calculates the squares and cubes of first 6 odd numbers through functions that are executed in two independent threads. Incorporate a delay of 0.5 sec. after calculation of each square/cube value. Report the time required for execution of the program.

 Program

 import time

 import threading

 def squares(nos):

 print(‘Calculating squares…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ‘, n, ‘ square =’, n * n)

 def cubes(nos):

 print(‘Calculating cubes…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ‘, n, ‘ cube =’, n * n * n)

 arr = [1, 3, 5, 7, 9, 11]

 startTime = time.time()

 th1 = threading.Thread(target = squares, args = (arr,))

 th2 = threading.Thread(target = cubes, args = (arr,))

 th1.start()

 th2.start()

 th1.join()

 th2.join()

 endTime = time.time()

 print(‘Time required = ‘, endTime - startTime, ‘sec’)

 Output

 Calculating squares…

 Calculating cubes…

 n = 1 square = 1

 n = 1 cube = 1

 n = 3 square = 9

 n = 3 cube = 27

 n = 5 square = 25

 n = 5 cube = 125

 n = 7 square = 49

 n = 7 cube = 343

 n = 9 square = 81

 n = 9 cube = 729

 n = 11 square = 121

 n = 11 cube = 1331

 Time required = 3.001171588897705 sec

 Tips

 	squares() and cubes() are being launched in separate threads.

 	Since squares() and cubes() need arr, it is passed to the constructor while launching the threads.

 	Arguments meant for target functions must be passed as a tuple.

 	join() waits until the thread on which it is called terminates.

 	If this program is executed on a single processor machine it will still work faster than the one in Problem 24.2. This is because when one thread is performing I/O, i.e. printing value of square/cube, the other thread can proceed with the calculation of cube/square.

 	The output shows values of squares and cubes mixed. How to take care of it has been shown in Chapter 25.

 Problem 24.4

 Write a program that reads the contents of 3 files a.txt, b.txt and c.txt sequentially and reports the number of lines present in it as well as the total reading time. These files should be added to the project and filled with some text. The program should receive the file names as command-line arguments. Suspend the program for 0.5 seconds after reading a line from any file.

 Program

 import time

 import threading

 startTime = time.time()

 lst = sys.argv

 lst = lst[1:]

 for file in lst:

 f = open(file, ‘r’)

 count = 0

 while True:

 data = f.readline()

 time.sleep(0.5)

 if data == ‘’:

 break

 count = count + 1

 print(‘File:’, file, ‘Lines:’, count)

 endTime = time.time()

 print(‘Time required =’, endTime - startTime, ‘sec’)

 Output

 File: a.txt Lines: 5

 File: b.txt Lines: 24

 File: c.txt Lines: 6

 Time required = 19.009087324142456 sec

 Tips

 	Files a.txt, b.txt and c.txt are added to the project as ‘Empty’ files by right-clicking the project in Project window in NetBeans. Once created, add some lines to each of these files.

 	To provide a.txt, b.txt and c.txt as command-line arguments, right-click the project in Project window and select ‘Properties’ followed by ‘Run’. Add ‘a.txt b.txt c.txt’ as ‘Application Arguments’.

 	Application arguments become available through sys.argv as a list. This list also includes application name as the 0th element in the list. So we have split the list to eliminate it.

 	File is opened for reading using open() and file is read line by line in a loop using readline().

 Problem 24.5

 Write a program that reads the contents of 3 files a.txt, b.txt and c.txt in different threads and reports the number of lines present in it as well as the total reading time. These files should be added to the project and filled with some text. The program should receive the file names as command-line arguments. Suspend the program for 0.5 seconds after reading a line from any file.

 Program

 import time

 import sys

 import threading

 def readFile(inputFile):

 f = open(inputFile, ‘r’)

 count = 0

 while True:

 data = f.readline()

 time.sleep(0.5)

 if data == ‘’:

 break

 count = count + 1

 print(‘File:’, inputFile, ‘Lines:’, count)

 startTime = time.time()

 lst = sys.argv

 lst = lst[1:]

 tharr = []

 for file in lst:

 th = threading.Thread(target = readFile, args = (file,))

 th.start()

 tharr.append(th)

 for th in tharr:

 th.join()

 endTime = time.time()

 print(‘Time required = ‘, endTime - startTime, ‘sec’)

 Output

 File: a.txt Lines: 5

 File: c.txt Lines: 6

 File: b.txt Lines: 24

 Time required = 12.504715204238892 sec

 Tips

 	For details of adding files to the project, making them available to application as command-line arguments and slicing the command-line argument list refer tips in Problem 24.4.

 	As each thread is launched, the thread object is added to the thread array through tharr.append(). This is necessary, so that we can later call join() on each thread.

 	This program performs better than the one in Problem 24.4 because as one thread is busy printing the file statistics, the other thread can continue reading a file.

 Exercise

 [A] State whether the following statements are True or False:

 	Multi-threading improves the speed of execution of the program.

 	A running task may have several threads running in it.

 	Multi-processing is same as multi-threading.

 	If we create a class that inherits from the Thread class, we can still inherit our class from some other class.

 	It is possible to change the name of the running thread.

 	To launch a thread we must explicitly call the function that is supposed to run in a separate thread.

 	To launch a thread we must explicitly call therun() method defined in a class that extends the Thread class.

 	Though we do not explicitly call the function that is supposed to run in a separate thread, it is possible to pass arguments to the function.

 	We cannot control the priority of multiple threads that we may launch in a program.

 [B] Answer the following:

 	What is the difference between multi-processing and multi-threading?

 	What is the difference between preemptive multi-threading and cooperative multi-threading?

 	Which are the two methods available for launching threads in a Python program?

 	If Ex class extends the Thread class, then can we launch multiple threads for objects of Ex class? If yes, how?

 	What do different elements of the following statement signify?
th1 = threading.Thread(target = quads, args = (a, b))

 	Write a multithreaded program that copies contents of one folder into another. The source and target folder paths should be input through keyboard.

 	Write a program that reads the contents of 3 files a.txt, b.txt and c.txt sequentially and converts their contents into uppercase and writes them into files aa.txt, bb.txt and cc.txt respectively. The program should report the time required in carrying out this conversion. The files a.txt, b.txt and c.txt should be added to the project and filled with some text. The program should receive the file names as command-line arguments. Suspend the program for 0.5 seconds after reading a line from any file.

 	Write a program that accomplishes the same task mentioned in Exercise [B](g) above by launching the conversion operations in 3 different threads.

 [B] Match the following:

 	
 a. Multiprocessing

 	
 1. use multiprocessing module

 	
 b. Pre-emptive multi-threading

 	
 2. use multi-threading

 	
 c. Cooperative multi-threading

 	
 3. use threading module

 	
 d. CPU-bound programs

 	
 4. use multi-processing

 	
 e. I/O-bound programs

 	
 5. use asyncio module

 25

 Synchronization

 	Synchronization

 	Examples of sharing Resources

 	Example of comm. between Threads

 	Mechanisms for Sharing Resources

 	Lock

 	RLock

 	Semaphore

 	Mechanisms for inter-thread Comm.

 	Event

 	Condition

 	Programs

 	Exercise

 KanNotes

 Synchronization

 	In a multithreaded application we may be needed to coordinate (synchronize) the activities of the threads running in it.

 	The need to coordinate activities of threads will arise in two situations:

	When data or other resources are to be shared amongst threads.

	When we need to carry out communication between threads.

 Examples of Sharing Resources

 	Suppose in a function we read a variable, modify it and then write it back, as in the statement n = n + 1. If this function is invoked through multiple threads, then n gets shared amongst threads. In such a case, if the current thread has read n and before it updates it another thread may update it. Such overlapping accesses or modifications from multiple threads may create problems.

 	Suppose there are two threads in an application. One thread reads a list of numbers and prints its squares and another reads the list and prints cubes of numbers in it. So both threads are going to share the list. It may appear that since both threads are going to ‘read’ numbers from the list we do not need synchronization. However, since both threads are going to print the squares and cubes, the output is likely to get mixed up.

 	To avoid mixing of output we should ensure that whichever thread gets the time-slot first should complete working with the list. If in-between other thread gets the time-slot, it should be made to wait. Only when first thread is done, the other thread should be able to access the list.

 Example of Communication between Threads

 	Suppose one thread is generating numbers in an infinite loop and another thread is finding squares of generated numbers. Unless the new number is generated its square cannot be found. So if squaring thread gets the time slot earlier than the generating thread, squaring thread must be made to wait. Also, when square is being generated, new numbers should not get generated. This is necessary otherwise the squaring thread may miss some numbers.

 	This is a typical producer-consumer problem, where the number generating thread is the producer and the squaring thread is the consumer.

 	Here communication between two threads would be required. When producer thread completes production it should communicate to the squaring thread that it is done with production. When consumer thread completes squaring it should communicate to the producer thread that it is done and producer thread can produce the next number.

 Mechanisms for Sharing Resources

 	Python’s threading module provides three mechanisms for sharing resources between threads:

	Lock

	RLock

	Semaphore

 	They should be used in following situations:
- For synchronized access to shared resources - use lock

- For nested access to shared resources - use re-entrant lock

- For permitting limited number of accesses to a resource - use semaphore

 Lock

 	Locks are used to synchronize access to a shared resource. We should first create Lock object. When we need to access the resource we should acquire(), then use the resource and once done, call release() as shown below.
lck = threading.Lock()

lck.acquire()

use the resource

lck.release()

 	For each shared resource, a new Lock object should be created.

 	A lock can be in two states—‘Locked’ or ‘Unlocked’.

 	A Lock object has two methods— acquire() and release(). If a thread calls acquire() it puts the lock in ‘Locked’ state if it is currently in ‘Unlocked’ state and returns. If it is already in ‘Locked’ state then the call to acquire() blocks the thread (means control doesn’t return from acquire()). A call to release() puts the lock in ‘Unlocked’ state.

 RLock

 	Sometimes a recursive function may be invoked through multiple threads. In such cases, if we use Lock to provide synchronized access to shared variables it would lead to a problem—thread will be blocked when it attempts to acquire the same lock second time.

 	This problem can be overcome by using re-entrant Lock or RLock. A re-entrant lock only blocks if another thread currently holds the lock. If the current thread tries to acquire a lock that it’s already holding, execution continues as usual.

 	A lock/rlock acquired by one thread can be release either by same thread or by another thread.

 	release() should be called as many times as acquire() is called.

 	Following code snippet shows working of normal lock and re-entrant lock.
lck = threading.Lock()

lck.acquire()

lck.acquire() # this will block

rlck = threading.RLock()

rlck.acquire()

rlck.acquire() # this won’t block

 	A lock/rlock is also known as mutex as it permits mutual exclusive access to a resource.

 Semaphore

 	If we wish to permit access to a resource like network connection or a database server to a limited number of threads we can do so using a semaphore object.

 	A semaphore object uses a counter rather than a lock flag. The counter can be set to indicate the number of threads that can acquire the semaphore before blocking occurs.

 	Once the counter is set, the counter decreases peracquire() call, and increases per release() call. Blocking occurs only if more than the set number of threads attempt to acquire the semaphore.

 	We have to only initialize the counter to the maximum number while creating the semaphore object, and the semaphore implementationl takes care of the rest.

 Mechanisms for inter-thread Communication

 	Python’s threading module provides two mechanisms for inter-thread communication:

	Event

	Condition

 Event

 	An Event object is used to communicate between threads. It has an internal flag which threads can set or clear through methods set() and clear().

 	Typical working: If thread 1 calls the method wait(), it will wait (block) if internal flag has not yet been set. Thread 2 will set the flag. Since the flag now stands set, Thread 1 will come out its wait state, perform its work and then clear the flag. This scenario is shown in the following program:
def fun1():

while True:

wait for the flag to be set

ev.wait()

once flag is set by thread 2, do the work in this thread

ev.clear() # clear the flag

def fun2():

while True:

perform some work

set the flag

ev.set()

ev = Event()

th1 = threading.Thread(target = fun1)

th2 = threading.Thread(target = fun2)

 Condition

 	A Condition object is an advanced version of the Event object. It too is used to communicate between threads. It has methods acquire(), release(), wait(), notify() and notifyAll().

 	A Condition object internally uses a lock that can be acquired or released using acquire() andrelease() functions respectively. acquire() blocks if the lock is already in locked state.

 	Condition object can notify other threads using notify()/notifyAll() about a change in the state of the program.

 	The wait() method releases the lock, and then blocks until it is awakened by a notify() ornotifyAll() call for the same Condition in another thread. Once awakened, it re-acquires the lock and returns.

 	A thread should release a Condition once it has completed the related actions, so that other threads can acquire the condition for their purposes.

 	Producer Consumer algorithm is a technique for generating requests and processing the pending requests. Producer produces requests, Consumer consumes generated requests. Both work as independent threads.

 	Condition object can be used in implementing a Producer Consumer algorithm as shown below:
Producer thread

cond.acquire()

code here to produce one item

cond.notify()

cond.release()

Consumer thread

cond.acquire()

while item_is_not_available():

cond.wait()

code here to consume the item

cond.release()

 	Working of Producer Consumer problem:
- Consumer must wait while Producer is producing

- Once Producer has produced it should send signal to Consumer

- Producer must wait while Consumer is consuming

- Once Consumer has consumed it should send signal to Producer

 Programs

 Problem 25.1

 Write a program where you can prove that in this programming situation synchronization is really required. Then write a program to demonstrate how synchronization can solve the problem.

 Program

 import time

 import threading

 def fun1():

 print(‘Entering fun1’)

 global g

 g += 1

 #time.sleep(10)

 g -= 1

 print(‘In fun1 g =’, g)

 print(‘Exiting fun1’)

 def fun2():

 print(‘Entering fun2’)

 global g

 g += 2

 g -= 2

 print(‘In fun2 g =’, g)

 print(‘Exiting fun2’)

 g = 10

 th1 = threading.Thread(target = fun1)

 th2 = threading.Thread(target = fun2)

 th1.start()

 th2.start()

 th1.join()

 th2.join()

 Output

 Entering fun1

 In fun1 g = 10

 Exiting fun1

 Entering fun2

 In fun2 g = 10

 Exiting fun2

 If you uncomment the call to time.sleep(), the output changes to:

 Entering fun1

 Entering fun2

 In fun2 g = 11

 Exiting fun2

 In fun1 g = 10

 Exiting fun1

 Tips

 	We are using the global variable g in fun1() and fun2() which are running in two different threads. As expected, both print the value of g as 10, as both increment and decrement it by 1 and 2 respectively.

 	If you uncomment the call to sleep() the output becomes inconsistent. fun1() increments the value of g to 11, but before it can decrement the incremented value, fun2() gets the time-slot, which increments g to 12, decrements it to 11 and prints it. The time-slot again goes to fun1(), which decrements g to 10 and prints it.

 	The solution to avoid this mismatch is given in the program shown below.

 Program

 import time

 import threading

 def fun1():

 print(‘Entering fun1’)

 global g

 lck.acquire()

 g += 1

 g -= 1

 lck.release()

 print(‘In fun1 g =’, g)

 print(‘Exiting fun1’)

 def fun2():

 print(‘Entering fun2’)

 global g

 lck.acquire()

 g += 2

 g -= 2

 lck.release()

 print(‘In fun2 g =’, g)

 print(‘Exiting fun2’)

 g = 10

 lck = threading.Lock()

 th1 = threading.Thread(target = fun1)

 th2 = threading.Thread(target = fun2)

 th1.start()

 th2.start()

 th1.join()

 th2.join()

 Tips

 	In main thread we have created a Lock object through the call threading.Lock().

 	If fun1 thread gets the first time-slot, it calls acquire(). This call puts the lock in ‘Locked’ state and returns. So fun1 thread can work with g. If midway through its time-slot expires and fun2 thread gets it, it will also call acquire(), but it will be blocked (control will not return from it) since lock is in ‘Locked’ state. In the next time-slot fun1 thread finishes its work and releases the lock (puts the lock in ‘Unlocked’ state) by calling release(). As a result, fun2 thread can work with g when it gets time-slot.

 Problem 25.2

 Write a program that calculates the squares and cubes of first 6 odd numbers through functions that are executed in two independent threads. Incorporate a delay of 0.5 sec. after calculation of each square/cube value. Report the time required for execution of the program. Make sure that the output of square() and cubes() doesn’t get mixed up.

 Program

 import time

 import threading

 def squares(nos, lck):

 lck.acquire()

 print(‘Calculating squares…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ’, n, ‘ square =’, n * n)

 lck.release()

 def cubes(nos, lck):

 lck.acquire()

 print(‘Calculating cubes…’)

 for n in nos:

 time.sleep(0.5)

 print(‘n = ‘, n, ‘ cube =’, n * n * n)

 lck.release()

 arr = [1, 3, 5, 7, 9, 11]

 startTime = time.time()

 lck = threading.Lock()

 th1 = threading.Thread(target = squares, args = (arr, lck))

 th2 = threading.Thread(target = cubes, args = (arr, lck))

 th1.start()

 th2.start()

 th1.join()

 th2.join()

 endTime = time.time()

 print(‘Time required = ‘, endTime - startTime, ‘sec’)

 Output

 Calculating squares…

 n = 1 square = 1

 n = 3 square = 9

 n = 5 square = 25

 n = 7 square = 49

 n = 9 square = 81

 n = 11 square = 121

 Calculating cubes…

 n = 1 cube = 1

 n = 3 cube = 27

 n = 5 cube = 125

 n = 7 cube = 343

 n = 9 cube = 729

 n = 11 cube = 1331

 Time required = 6.001343250274658 sec

 Tips

 	To ensure that output of squares() doesn’t get mixed up with output of cubes() we should ensure that when one is working another should be put on hold.

 	In main thread we have created a Lock object through the call threading.Lock(). Along with the list, thisLock object is shared between squares() and cubes().

 	If squares thread gets the first time-slot, it calls acquire(). This call puts the lock in ‘Locked’ state and returns. So squares thread can starts generating and printing squares. If midway through its time-slot expires and cubes thread gets it, it will also call acquire(), but it will be blocked (control will not return from it) since lock is in ‘Locked’ state. In the next time-slot squares thread finishes its work and releases the lock (puts the lock in ‘Unlocked’ state) by calling release().

 	Similar reasoning would hold good if cubes thread gets the first time-slot.

 	Suppose there were three threads squares, cubes and quadruples and squares thread acquires the lock. When it releases the lock which of the two waiting threads will proceed is not defined and may vary across Python implementations.

 Problem 25.3

 Write a program that prints the following 3 messages through 3 different threads:

 [What is this life…]

 [We have no time…]

 [To stand and stare!]

 Each thread should be passed the relevant message and should print ‘[’, message and ‘]’ through three different print() calls.

 Program

 import time

 import threading

 def printMsg(msg, lck):

 lck.acquire()

 print(‘[’, end = ‘’)

 print(msg, end = ‘’)

 time.sleep(0.5)

 print(‘]’)

 lck.release()

 lck = threading.Lock()

 th1 = threading.Thread(target = printMsg, args = (‘What is this life…’, lck))

 th1.start()

 th2 = threading.Thread(target = printMsg, args = (‘We have no time…’, lck))

 th2.start()

 th3 = threading.Thread(target = printMsg, args = (‘To stand and stare!’, lck))

 th3.start()

 th1.join()

 th2.join()

 th3.join()

 Tips

 	Three threads are created. In each thread the printMsg() function is executed, but a different message is passed to it in each thread.

 	To ensure that ‘[’, message and ‘]’ are printed in the same order in each thread, the activity of the threads is synchronized.

 	When one thread acquires a lock, other are blocked until the thread that acquired the lock releases it.

 Problem 25.4

 Write a program that runs a recursive print_num() function in 2 threads. This function should receive an integer and print all number from that number up to 1.

 Program

 import threading

 def print_num(n):

 try:

 rlck.acquire()

 if n == 0:

 return

 else:

 t = threading.current_thread()

 print(t.name, ‘:’, n)

 n -= 1

 print_num(n)

 finally:

 rlck.release()

 rlck = threading.RLock()

 th1 = threading.Thread(target = print_num, args = (8,))

 th1.start()

 th2 = threading.Thread(target = print_num, args = (5,))

 th2.start()

 th1.join()

 th2.join()

 Output

 Thread-1: 8

 Thread-1: 7

 Thread-1: 6

 Thread-1: 5

 Thread-1: 4

 Thread-1: 3

 Thread-1: 2

 Thread-1: 1

 Thread-2: 5

 Thread-2: 4

 Thread-2: 3

 Thread-2: 2

 Thread-2: 1

 Tips

 	Since we are sharing resources in a recursive function we have used RLock instead of Lock.

 	A lock acquired by one thread can be released by another. So we have released the lock in finally block for each thread. finally block goes to work only when control returns from print_num() last time after completing all recursive calls.

 	We have printed name of each thread along with the current value of n so that we get an idea of which thread are we working in.

 	If you replace RLock with Lock you will get output from one thread only. This is because one thread will acquire the lock and do some printing. When its’ time-slot expires and another thread gets it, it will also call acquire() and would get blocked.

 	If you do not use any lock the output from the two threads will get mixed up.

 Problem 25.5

 Write a program that runs a recursive factorial() function in 2 threads. This function should receive an integer and print all the intermediate products and final product.

 Program

 import threading

 def factorial(n):

 try:

 rlck.acquire()

 if n == 0:

 return 1

 else:

 p = n * factorial(n - 1)

 print(f‘{n}! = {p}’)

 return p

 finally:

 rlck.release()

 rlck = threading.RLock()

 th1 = threading.Thread(target = factorial, args = (5,))

 th1.start()

 th2 = threading.Thread(target = factorial, args = (8,))

 th2.start()

 th1.join()

 th2.join()

 Output

 1 != 1

 2 != 2

 3 != 6

 4 != 24

 5 != 120

 1 != 1

 2 != 2

 3 != 6

 4 != 24

 5 != 120

 6 != 720

 7 != 5040

 8 != 40320

 Tips

 	Since we are sharing resources in a recursive function we have used RLock instead of Lock.

 	A lock acquired by one thread can be released by another. So we have released the lock in finally block for each thread. finally block goes to work only when control returns from factorial() last time after completing all recursive calls.

 	If you replace RLock with Lock you will get output from one thread only. This is because one thread will acquire the lock and do some calculation and printing. When its’ time-slot expires and other thread gets it, it will also call acquire() and would get blocked.

 	If you do not use any lock the output from the two threads will get mixed up.

 Problem 25.6

 Write a program that defines a function fun() that prints a message that it receives infinite times. Limit the number of threads that can invoke fun() to 3. If 4th thread tries to invoke fun(), it should not get invoked.

 Program

 import threading

 def fun(msg):

 s.acquire()

 t = threading.current_thread()

 while True:

 print(t.name, ‘:’, msg)

 s.release()

 s = threading.BoundedSemaphore(3)

 th1 = threading.Thread(target = fun, args = (‘Hello’,))

 th2 = threading.Thread(target = fun, args = (‘Hi’,))

 th3 = threading.Thread(target = fun, args = (‘Welcome’,))

 th4 = threading.Thread(target = fun, args = (‘ByeBye’,))

 th1.start()

 th2.start()

 th3.start()

 th4.start()

 th1.join()

 th2.join()

 th3.join()

 th4.join()

 Output

 Thread-2: Hi

 Thread-1: Hello

 Thread-2: Hi

 Thread-1: Hello

 Thread-2: Hi

 Thread-3: Welcome

 Thread-1: Hello

 Thread-2: Hi

 Thread-3: Welcome

 Thread-3: Welcome

 Thread-3: Welcome

 …

 Tips

 	From the output it is evident that the 4th thread could not invoke fun().

 Problem 25.7

 Write a program that runs functions fun1() and fun2() in two different threads. Using an event object, function fun1() should wait for fun2() to signal it random intervals that its wait is over. On receiving the signal, fun1() should report the time and clear the event flag.

 Program

 import threading

 import random

 import time

 def fun1(ev, n):

 for i in range(n):

 print(i + 1, ‘Waiting for the flag to be set…’)

 ev.wait()

 print(‘Wait complete at:’, time.ctime())

 ev.clear()

 print()

 def fun2(ev, n):

 for i in range(n):

 time.sleep(random.randrange(2, 5))

 ev.set()

 ev = threading.Event()

 th = []

 num = random.randrange(4, 8)

 th.append(threading.Thread(target = fun1, args = (ev, num)))

 th[-1].start()

 th.append(threading.Thread(target = fun2, args = (ev, num)))

 th[-1].start()

 for t in th:

 t.join()

 print(‘All done!!’)

 Output

 1 Waiting for the flag to be set…

 Wait complete at: Sat Nov 2 11:03:43 2019

 2 Waiting for the flag to be set…

 Wait complete at: Sat Nov 2 11:03:45 2019

 3 Waiting for the flag to be set…

 Wait complete at: Sat Nov 2 11:03:48 2019

 4 Waiting for the flag to be set…

 Wait complete at: Sat Nov 2 11:03:52 2019

 5 Waiting for the flag to be set…

 Wait complete at: Sat Nov 2 11:03:54 2019

 All done!!

 Tips

 	Note how the thread array is maintained using index -1 to refer to the last thread added to the array.

 Problem 25.8

 Write a program that implements a Producer - Consumer algorithm. The producer thread should generate random numbers in the range 10 to 20. The consumer thread should print the square of the random number produced by the producer thread. The execution should proceed as follows:

 - Consumer must wait while Producer is producing

 - Once Producer has produced, it should send signal to Consumer

 - Producer must wait while Consumer is consuming

 - Once Consumer has consumed, it should send signal to Producer

 Program

 import threading

 import random

 import queue

 import time

 def producer():

 for i in range(5):

 time.sleep(random.randrange(2, 5))

 cond.acquire()

 num = random.randrange(10, 20)

 print(‘Generated number =’, num)

 q.append(num)

 cond.notify()

 cond.release()

 def consumer():

 for i in range(5):

 cond.acquire()

 while True:

 if len(q):

 num = q.pop()

 break

 cond.wait()

 print(‘Its square =’, num * num)

 cond.release()

 cond = threading.Condition()

 q = []

 th1 = threading.Thread(target = producer)

 th2 = threading.Thread(target = consumer)

 th1.start()

 th2.start()

 th1.join()

 th2.join()

 print(‘All done!!’)

 Output

 Generated number = 14

 Its square = 196

 Generated number = 10

 Its square = 100

 Generated number = 13

 Its square = 169

 Generated number = 15

 Its square = 225

 Generated number = 10

 Its square = 100

 All done!!

 Tips

 	Examine the program for the following possibilities and satisfy yourself that it works as per expectation in all situations:
- Producer gets a time-slot before Consumer

- Producer gets time-slot when Consumer is consuming

- Producer finishes producing before its time-slot expires

- Consumer gets a time-slot after Producer

- Consumer finishes before its time-slot expires

- Consumer gets a time-slot before Producer

- Consumer gets time-slot when Producer is busy

 Exercise

 [A] State whether the following statements are True or False:

 	All multi-threaded applications should use synchronization.

 	If 3 threads are going to read from a shared list it is necessary to synchronize their activities.

 	A Lock acquired by one thread can be released by either the same thread or any other thread running in the application.

 	If Lock is used in reentrant code then the thread is likely to get blocked during the second call.

 	Lock and RLock work like a Mutex.

 	A thread will wait on an Event object unless its internal flag is cleared.

 	A Condition object internally uses a lock.

 	While using RLock we must ensure that we callrelease() as many times as the number of calls to acquire().

 	Using Lock we can control the maximum number of threads that can access a resource.

 	There is no difference between Event and Condition synchronization objects.

 [B] Answer the following:

 	Which synchronization mechanisms are used for sharing resources amongst multiple threads?

 	Which synchronization objects are used for inter-thread communication in a multi-threaded application?

 	What is the difference between a Lock and RLock?

 	What is the purpose of the Semaphore synchronization primitive?

 	Write a program that has three threads in it. The first thread should produce random numbers in the range 1 to 20, the second thread should display the square of the number generated by first thread on the screen, and the third thread should write cube of number generated by first thread into a file.

 [C] Match the following:

 	
 a. RLock limits

 	
 1. number of threads accessing a resource

 	
 b. Event

 	
 2. useful in sharing resource in reentrant code

 	
 c. Semaphore

 	
 3. useful for inter-thread communication

 	
 d. Condition

 	
 4. signals waiting threads on change in state

 	
 e. Lock

 	
 5. useful in sharing resource among threads

 Index

 *, 101

 **, 101

 @, 223

 _ _add_ _, 203

 _ _doc_ _, 284

 _ _eq_ _, 203

 _ _floordiv_ _, 203

 _ _ge_ _, 203

 _ _gt_ _, 203

 _ _iadd_ _, 203

 _ _idiv_ _, 203

 _ _ifloordiv_ _, 203

 _ _imod_ _, 203

 _ _imult_ _, 203

 _ _ipow_ _, 203

 _ _isub_ _, 203

 _ _iter_ _, 233

 _ _le_ _, 203

 _ _lt_ _, 203

 _ _main_ _, 163

 _ _mod_ _, 203

 _ _mult_ _, 203

 _ _name_ _, 163

 _ _ne_ _, 203

 _ _next_ _, 233

 _ _pow_ _, 203

 _ _sub_ _, 203

 _ _truediv_ _, 203

 init _, 187

 A

 abs(), 16

 abspath(), 276

 abstract classes, 220

 accessing dictionary elements, 100

 accessing list elements, 70

 accessing set elements, 93

 accessing string elements, 28

 accessing tuple elements, 82

 acos(), 10

 add(), 92

 and, 41, 287

 append(), 73

 arithmetic operators, 13

 asin(), 17

 assert, 288

 assertion, 288

 assignment, 13

 atan(), 17

 B

 basic list operations, 71

 bin(), 16

 bitwise operators, 288

 break, 54

 built-in functions, 16

 bytes datatype, 294

 C

 calling functions, 201

 calling methods, 201

 capitalize(), 30

 ceil(), 17

 chr(), 30

 class declaration, 185

 class variables, 188

 class methods, 188

 classes, 183

 clear(), 93, 101

 close(), 269

 cmath, 9

 code point, 294

 command-line arguments, 285

 comments, 18

 communication with functions, 120

 comparison, 40

 complement, 287

 complex, 12, 15

 comprehensions, 109

 condition, 322

 conditional expressions, 42

 console input, 62

 console input/output, 61

 console output, 62

 containership, 212

 continue, 54

 conversions, 15

 copyfile(), 286

 cos(), 17

 cosh(), 17

 count(), 73

 D

 decimal, 17

 decision control instruction, 39, 40

 decorating functions with args, 291

 decorators, 289

 default values for arguments, 124

 degrees(), 17

 del(), 71

 diamond problem, 219

 dictionaries, 99, 100

 dictionary comprehension, 111

 dictionary methods, 101

 dictionary operations, 101

 dir(), 188

 discard(), 93

 divmod(), 16

 docstring, 284

 documentation strings, 284

 dump(), 273, 274

 dumps(), 273

 E

 e, 17

 elif, 40

 else block, 257

 else with for, 53

 else with while, 53

 else, 40

 encoding, 274, 293

 endswith(), 30

 event, 321

 event-driven programming model, 7

 everything is an object, 204

 except, 253

 exception handling, 249

 exception handling tips, 253

 exceptions, 251, 252

 exists(), 210

 exit(), 219

 exp(), 10

 F

 fabs(), 17

 factorial(), 17

 features of inheritance, 217

 file and directory operations, 275

 file i/o, 267, 268, 269

 file opening modes, 270

 filter() function, 152

 finally block, 258

 find(), 37

 float, 12, 13

 floor(), 17

 for, 52, 53

 formatted printing, 63

 fstring, 63

 functions, 120, 121

 functions as first-class values, 148

 functional programming, 147, 148

 functional programming model, 5

 G

 Guido Van Rossum, 2

 generator expressions, 237

 generators, 236

 getcwd(), 276

 getopt, 286

 globals(), 175

 H

 has a relationship, 212

 hex(), 16

 higher order functions, 150

 I

 i/o system, 268

 id(), 148

 identifier naming convention, 200

 identifiers, 11

 if, 40

 imitating a structure, 205

 importing a module, 163

 indentation, 18

 index(), 73

 inheritance, 213

 inner functions, 177

 input(), 62

 insert(), 73

 int, 12

 integer and float ranges, 12

 interactive mode, 10

 intricacies of classes and objects, 199

 introduction to python, 1

 isalnum(), 30

 isalpha(), 30

 isdigit(), 30

 isfile(), 210

 isinstance(), 217

 islower(), 30

 issubclass(), 217

 isupper(), 30

 items(), 100

 iterable, 232

 iter(), 152

 iterators, 233

 iterators and generators, 231

 iterator, 155

 inter-thread communication, 321

 J

 JSON, 272, 273

 join(), 276

 K

 keys(), 100, 101

 keywords, 11

 keyword arguments, 121

 L

 lambda functions, 149

 launching threads, 306

 left shift, 287

 len(), 76

 library functions, 16

 like a relationship, 212

 list, 70

 lists, 69

 list comprehension, 110

 list methods, 73

 list varieties, 73

 listdir(), 296

 loads(), 273

 locals(), 175

 lock, 319

 log(), 17

 log10(), 17

 logical operators, 41

 lower(), 17

 lower(), 22

 lstrip(), 22

 M

 main module, 162

 makedirs(), 276

 map() function, 151

 map, filter, reduce, 151

 math module, 17, 163

 mathematical set operations, 94

 max(), 9, 69, 79, 87

 mechanisms for

 inter-thread communication, 321

 sharing resources, 319

 min(), 16, 71, 83, 101

 miscellany, 283

 modf(), 17

 modules, 161

 moving within a file, 271

 multi-lining, 18

 multiple modules, 162

 multi-threading, 303

 N

 NameError, 251, 252

 namespace, 174

 namespaces, 173

 nested dictionary, 101

 next(), 233, 234

 none, 121

 not, 41

 nuances of try and except, 253

 O

 object class, 217

 object creation, 185

 object initialization, 186

 object-oriented prog. model, 7

 objects, 184

 oct(), 16

 open(), 268

 operation nuances, 14

 operator overloading, 202

 operator precedence, 15

 or, 41, 287

 ord(), 30

 P

 PYTHONPATH, 164

 passing parameters to a thread, 307

 packages, 165

 parsing of command-line, 286

 pass statement, 54

 perf_counter(), 291

 pi, 17

 pop(), 73

 positional arguments, 121

 pow(), 16

 print(), 62, 63, 64

 procedural programming model, 6

 programming paradigms, 5, 184

 public and private members, 185

 python,

 basics, 9

 important features, 3

 programming models, 5

 reasons for popularity, 2

 resources, 4

 specification, 10

 type jargon, 17

 types, 12

 R

 radians(), 17

 raise exception, 252

 randint(), 18

 random, 17

 random module, 163

 random(), 18, 163

 range(), 53

 read / write operations, 269

 readline(), 270

 readlines(), 270

 recursion, 135

 recursion limit, 139

 recursive factorial function, 137

 recursive functions, 136

 reduce() function, 152

 remove(), 73, 93, 276

 rename(), 276

 repetition control instruction, 52

 replace(), 30

 reuse mechanisms, 212

 reverse(), 73

 right shift, 287

 rlock, 320

 round(), 17

 rstrip(), 30

 runtime polymorphism, 221

 S

 same code, different interpretation, 165

 scope and LEGB rule, 178

 script mode, 10

 search sequence, 164

 seed(), 17

 seek(), 271

 self, 185, 186

 semaphore, 320

 serialization and deserialization, 272

 set comprehension, 111

 set methods, 93

 set operations, 93

 set(), 92

 sets, 91

 shutil, 286

 sin(), 17

 sinh(), 17

 sort(), 73

 sorted(), 71

 split(), 30

 sqrt(), 17

 startswith(), 30

 stdout, 63

 str(), 30

 string, 28

 string indexing, 28

 string operations, 29

 string properties, 29

 string slicing, 29

 string, 12

 strings, 27

 sum(), 83

 super(), 214, 216

 swapcase(), 30

 symbol table, 174

 synchronization, 317, 318

 syntax errors, 250

 sys.argv, 285

 sys.path, 164

 T

 tan(), 17

 tanh(), 17

 third-party packages, 166

 thread properties, 306

 threads,

 communication between, 318

 sharing resources, 318

 time, 291, 307

 trunc(), 23, 24

 try, 252, 253

 tuple operations, 83

 tuple varieties, 84

 tuples, 81

 ways to create, 82

 tuple(), 82

 type(), 82, 193

 type conversion, 206 types of arguments, 121

 types of concurrencies, 304

 types of inheritance, 217

 types of multi-threading, 305

 types of recursion, 138

 U

 UTF-16, 293

 UTF-8, 293

 unicode, 293

 unpacking arguments, 124

 update(), 93, 95

 updating set operations, 94

 upper(), 30

 updating set operations, 94

 usage of while and for, 52

 user-defined exceptions, 255

 user-defined functions, 120

 user-defined iterators, 234

 using lambda with map(), filter(), reduce(), 153

 V

 values(), 86

 variable-length arguments, 121

 variable type and assignment, 13

 variations of import, 164

 vars() and dir() functions, 188, 189

 W

 while, 52

 with, 271

 write(), 268

 writelines(), 269

 X

 xor, 287

 Y

 yield, 236

 Z

 ZeroDivisorError, 251, 252

 zip() function, 232

OEBPS/images/p150b.jpg

OEBPS/images/p156.jpg

OEBPS/images/p152.jpg

OEBPS/images/p20.jpg

OEBPS/images/p157.jpg

OEBPS/images/p256.jpg

OEBPS/images/logo.jpg

OEBPS/images/p25.jpg

OEBPS/images/p115.jpg

OEBPS/images/p258a.jpg

OEBPS/images/p116.jpg

OEBPS/images/p258.jpg

OEBPS/images/p120.jpg

OEBPS/images/p121.jpg

OEBPS/images/p260.jpg

cover.jpeg

OEBPS/images/p122.jpg

OEBPS/images/p122a.jpg

OEBPS/images/p150.jpg

OEBPS/images/p150a.jpg

nav.xhtml

 		Cover

 		Jacket

 		Title Page

 		Copyright Page

 		Dedication

 		About the Author

 		Preface To Second Edition

 		Brief Contents

 		Table of Contents

 		
 1 Introduction to Python

 		What is Python?

 		Reasons for Popularity

 		What sets Python apart?

 		What can be done using Python?

 		Who uses Python today?

 		Python Resources

 		Programming Paradigms

 		Functional Programming Model

 		Procedural Programming Model

 		Object-oriented Programming Model

 		Event-driven Programming Model

 		Exercise

 		
 2 Python Basics

 		Python Specification

 		Working with Python

 		Identifiers and Keywords

 		Python Types

 		Integer and Float Ranges

 		Variable Type and Assignment

 		Arithmetic Operators

 		Operation Nuances

 		Operator Precedence

 		Conversions

 		Built-in Functions

 		Library Functions

 		Python Type Jargon

 		Comments and Indentation

 		Multi-lining

 		Programs

 		Exercise

 		
 3 Strings

 		What are Strings?

 		Accessing String Elements

 		String Properties

 		String Operations

 		Programs

 		Exercise

 		
 4 Decision Control Instruction

 		Decision Control Instruction

 		Logical Operators

 		Conditional Expressions

 		Programs

 		Exercise

 		
 5 Repetition Control Instruction

 		Repetition Control Instruction

 		Usage of while and for

 		break and continue

 		pass Statement

 		Programs

 		Exercise

 		
 6 Console Input/Output

 		Console Input

 		Console Output

 		Formatted Printing

 		Programs

 		Exercise

 		
 7 Lists

 		What are Lists?

 		Accessing List Elements

 		Basic List Operations

 		List Methods

 		List Varieties

 		Programs

 		Exercise

 		
 8 Tuples

 		What are Tuples?

 		More Ways to Create Tuples

 		Accessing Tuple Elements

 		Tuple Operations

 		Tuple Varieties

 		Programs

 		Exercise

 		
 9 Sets

 		What are Sets?

 		Accessing Set Elements

 		Set Operations

 		Set Methods

 		Mathematical Set Operations

 		Updating Set Operations

 		Programs

 		Exercise

 		
 10 Dictionaries

 		What are Dictionaries?

 		Accessing Dictionary Elements

 		Dictionary Operations

 		Dictionary Methods

 		Nested Dictionary

 		Programs

 		Exercise

 		
 11 Comprehensions

 		What are Comprehensions?

 		List Comprehension

 		Set Comprehension

 		Dictionary Comprehension

 		Programs

 		Exercise

 		
 12 Functions

 		What are Functions?

 		Communication with Functions

 		Types of Arguments

 		Unpacking Arguments

 		Programs

 		Exercise

 		
 13 Recursion

 		Recursive Functions

 		Recursive Factorial Function

 		Types of Recursion

 		Recursion Limit

 		Programs

 		Exercise

 		
 14 Functional Programming

 		Functional Programming

 		Functions as First-class Values

 		Lambda Functions

 		Higher Order Functions

 		Map, Filter, Reduce

 		map() Function

 		filter() Function

 		reduce() Function

 		Using Lambda with map(), filter(), reduce()

 		Where are they Useful?

 		Programs

 		Exercise

 		
 15 Modules and Packages

 		The Main Module

 		Multiple Modules

 		Importing a Module

 		Variations of import

 		Search Sequence

 		Same Code, Different Interpretation

 		Packages

 		Third-party Packages

 		Programs

 		Exercise

 		
 16 Namespaces

 		Symbol Table

 		Namespace

 		globals() and locals()

 		Where to use them?

 		Inner Functions

 		Scope and LEGB Rule

 		Programs

 		Exercise

 		
 17 Classes and Objects

 		Programming Paradigms

 		What are Classes and Objects?

 		Public and Private Members

 		Class Declaration and Object Creation

 		Object Initialization

 		Class Variables and Methods

 		vars() and dir() Functions

 		vars() and dir() with Classes and Objects

 		Programs

 		Exercise

 		
 18 Intricacies of Classes and Objects

 		Identifier Naming Convention

 		Calling Functions and Methods

 		Operator Overloading

 		Which Operators to Overload

 		Everything is an Object

 		Imitating a Structure

 		Type Conversion

 		Programs

 		Exercise

 		
 19 Containership and Inheritance

 		Reuse Mechanisms

 		Which to use When?

 		Containership

 		Inheritance

 		What is Accessible where?

 		isinstance() and issubclass()

 		The object class

 		Features of Inheritance

 		Types of Inheritance

 		Diamond Problem

 		Abstract Classes

 		Runtime Polymorphism

 		Programs

 		Exercise

 		
 20 Iterators and Generators

 		Iterables and Iterators

 		zip() Function

 		Iterators

 		User-defined Iterators

 		Generators

 		Which to use When?

 		Generator Expressions

 		Programs

 		Exercise

 		
 21 Exception Handling

 		What may go Wrong?

 		Syntax Errors

 		Exceptions

 		How to deal with Exceptions?

 		How to use try - except?

 		Nuances of try and except

 		User-defined Exceptions

 		else Block

 		finally Block

 		Exception Handling Tips

 		Programs

 		Exercise

 		
 22 File Input/Output

 		I/O System

 		File I/O

 		Read / Write Operations

 		File Opening Modes

 		with Keyword

 		Moving within a File

 		Serialization and Deserialization

 		Serialization of User-defined Types

 		File and Directory Operations

 		Programs

 		Exercise

 		
 23 Miscellany

 		Documentation Strings

 		Command-line Arguments

 		Parsing of Command-line

 		Bitwise Operators

 		Assertion

 		Decorators

 		Decorating Functions with Arguments

 		Unicode

 		bytes Datatype

 		Programs

 		Exercise

 		
 24 Multi-threading

 		Types of Concurrencies

 		Types of Multi-threading

 		When to use Concurrency

 		Thread Properties

 		Launching Threads

 		Passing Parameters to a Thread

 		Programs

 		Exercise

 		
 25 Synchronization

 		Synchronization

 		Examples of Sharing Resources

 		Example of Communication between Threads

 		Mechanisms for Sharing Resources

 		Lock

 		RLock

 		Semaphore

 		Mechanisms for inter-thread Communication

 		Event

 		Condition

 		Programs

 		Exercise

 		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1 Introduction to Python

 		1

 		2

 		3

 		4

 		5

 		6

 		7

 		8

 		9

 		10

 		11

 		12

 		13

 		14

 		15

 		16

 		17

 		1

 		2

 		3

 		4

 		5

 		6

 		7

 		8

 		9

 		10

 		11

 		12

 		13

 		14

 		15

 		16

 		17

 		18

 		19

 		20

 		21

 		22

 		23

 		24

 		25

 		26

 		27

 		28

 		29

 		30

 		31

 		32

 		33

 		34

 		35

 		36

 		37

 		38

 		39

 		40

 		41

 		42

 		43

 		44

 		45

 		46

 		47

 		48

 		49

 		50

 		51

 		52

 		53

 		54

 		55

 		56

 		57

 		58

 		59

 		60

 		61

 		62

 		63

 		64

 		65

 		66

 		67

 		68

 		69

 		70

 		71

 		72

 		73

 		74

 		75

 		76

 		77

 		78

 		79

 		80

 		81

 		82

 		83

 		84

 		85

 		86

 		87

 		88

 		89

 		90

 		91

 		92

 		93

 		94

 		95

 		96

 		97

 		98

 		99

 		100

 		101

 		102

 		103

 		104

 		105

 		106

 		107

 		108

 		109

 		110

 		111

 		112

 		113

 		114

 		115

 		116

 		117

 		118

 		119

 		120

 		121

 		122

 		123

 		124

 		125

 		126

 		127

 		128

 		129

 		130

 		131

 		132

 		133

 		134

 		135

 		136

 		137

 		138

 		139

 		140

 		141

 		142

 		143

 		144

 		145

 		146

 		147

 		148

 		149

 		150

 		151

 		152

 		153

 		154

 		155

 		156

 		157

 		158

 		159

 		160

 		161

 		162

 		163

 		164

 		165

 		166

 		167

 		168

 		169

 		170

 		171

 		172

 		173

 		174

 		175

 		176

 		177

 		178

 		179

 		180

 		181

 		182

 		183

 		184

 		185

 		186

 		187

 		188

 		189

 		190

 		191

 		192

 		193

 		194

 		195

 		196

 		197

 		198

 		199

 		200

 		201

 		202

 		203

 		204

 		205

 		206

 		207

 		208

 		209

 		210

 		211

 		212

 		213

 		214

 		215

 		216

 		217

 		218

 		219

 		220

 		221

 		222

 		223

 		224

 		225

 		226

 		227

 		228

 		229

 		230

 		231

 		232

 		233

 		234

 		235

 		236

 		237

 		238

 		239

 		240

 		241

 		242

 		243

 		244

 		245

 		246

 		247

 		248

 		249

 		250

 		251

 		252

 		253

 		254

 		255

 		256

 		257

 		258

 		259

 		260

 		261

 		262

 		263

 		264

 		265

 		266

 		267

 		268

 		269

 		270

 		271

 		272

 		273

 		274

 		275

 		276

 		277

 		278

 		279

 		280

 		281

 		282

 		283

 		284

 		285

 		286

 		287

 		288

 		289

 		290

 		291

 		292

 		293

 		294

 		295

 		296

 		297

 		298

 		299

 		300

 		301

 		302

 		303

 		304

 		305

 		306

 		307

 		308

 		309

 		310

 		311

 		312

 		313

 		314

 		315

 		316

 		317

 		318

 		319

 		320

 		321

 		322

 		323

 		324

 		325

 		326

 		327

 		328

 		329

 		330

 		331

 		332

 		333

 		334

 		335

 		336

 		337

 		338

 		339

 		340

 		341

 		342

 		343

 		344

 		345

 		346

 		347

 		348

 		349

 		350

 		351

 		352

 		353

 		354

 		355

 		356

 		357

 		358

 		359

 		360

 		361

 		362

 		363

 		364

OEBPS/images/p309.jpg

OEBPS/images/p308.jpg

OEBPS/images/p4.jpg

OEBPS/images/p310.jpg

OEBPS/images/p5.jpg

OEBPS/images/p42.jpg

OEBPS/images/p66.jpg

OEBPS/images/p54.jpg

OEBPS/images/p70.jpg

OEBPS/images/p66a.jpg

page-map.xml

OEBPS/images/p79.jpg

OEBPS/images/p81.jpg

OEBPS/images/p80.jpg

